Physics.Math.Code
143K subscribers
5.21K photos
2.09K videos
5.81K files
4.47K links
VK: vk.com/physics_math
Чат инженеров: @math_code
Учебные фильмы: @maths_lib
Репетитор IT mentor: @mentor_it
YouTube: youtube.com/c/PhysicsMathCode

№ 6045941532

Обратная связь: @physicist_i
Download Telegram
💥 Первый лазер был изобретён американским физиком Теодором Майманом 16 мая 1960 года в исследовательской лаборатории Хьюза (Hughes Research Laboratories). Майман создал лазер вопреки мнению многих учёных, которые были уверены, что рубин не годится в качестве рабочей среды. 7 июля 1960 года на специально созванной пресс-конференции Майман объявил о создании лазера и рассказал о возможных областях его применения — связь, медицина, военная техника, транспорт, высокие технологии. Особенности конструкции:
▪️ В качестве активной среды — кристалл искусственного рубина ( оксид алюминия Al₂O₃ с небольшой примесью хрома Cr ).
▪️ Из кристалла был изготовлен стержень в виде цилиндра диаметром 1 и длиной 2 см, который в процессе работы подвергался облучению излучением импульсной газоразрядной лампы.
▪️ Резонатором служил резонатор Фабри-Перо, образованный серебряными зеркальными покрытиями, нанесёнными на торцы стержня.
▪️ Лазер работал в импульсном режиме, излучая свет с длиной волны 694,3 нм.
▪️ Майман предложил принцип накачки рабочего тела — короткими вспышками света от лампы-вспышки.
▪️ Зеркальные покрытия на торцах кристалла создавали положительную обратную связь, чтобы усилитель стал генератором.
▪️ Расчёты Маймана показали, что атомы хрома в кристалле рубина имеют подходящую систему энергетических уровней, которая делает возможной генерацию лазерного излучения.
▪️ Первый лазер Маймана стал отправной точкой для развития лазерных технологий. Лазеры стали незаменимыми инструментами в физике, химии, биологии и других научных дисциплинах, позволили учёным проводить более точные эксперименты и измерения.
▪️ Лазеры стимулировали дальнейшие исследования и инновации в области оптики и фотоники, привели к разработке новых типов лазеров, увеличению мощности и эффективности.

Импульсные лазеры мощнее непрерывных в плане мощности:
▫️Непрерывные лазеры характеризуются постоянной выходной мощностью, которая может достигать десятков киловатт. Это делает их идеальными для задач, требующих высокой мощности на протяжении длительного времени, таких как лазерная резка или сварка металлов.
▫️Импульсные лазеры работают иначе — они передают энергию в короткие, мощные вспышки. Это делает их менее энергоёмкими, поскольку импульсы могут достигать высокой пиковой мощности при минимальном общем энергопотреблении. Такой подход позволяет выполнять точные, деликатные работы, не перегревая материал.

Таким образом, для крупных производств, где необходима высокая мощность и стабильность, лучше подойдут непрерывные лазеры, а для точных задач, таких как микросварка, очистка поверхности или гравировка, рекомендуется использовать импульсные лазеры. #лазер #техника #science #физика #physics #производство

💥 Лазерная очистка поверхности старой монеты

💥 Лазерная резка

🔦 Лазерная сварка с разной формой луча

💥 Лазерное скальпирование микросхемы

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍5019🔥6❤‍🔥3🤔31🌚1
🔍 Субботняя задачка по физике для разминки наших подписчиков

Вспомним немного оптики. Задачка из дополнительных вступительных испытаний в МГУ.

✍🏻 Попробуйте решить самостоятельно и написать в комментариях ваши идеи. ( Обсуждаем задачу здесь )

#геометрия #оптика #олимпиады #мгу #дви #задачи #problems #физика

💡 Physics.Math.Code // @physics_lib
1👍19147🔥7🤯2🤷‍♀1
🔥 Индукционная закалка металла: нагрев и быстрое охлаждение 💦

Вы когда-нибудь видели, как раскалённую докрасна металлическую деталь за считанные секунды охлаждают мощными струями воды? Это один из самых эффектных процессов в металлообработке — индукционная закалка. то современный, высокоточный и очень эффективный метод поверхностной закалки. Его главная цель — сделать внешний слой детали исключительно твёрдым и износостойким, сохранив при этом вязкую сердцевину, которая не будет хрупкой и сможет выдерживать ударные нагрузки. Представьте себе шестерёнку или ось станка: их поверхность должна сопротивляться истиранию, а внутри они не должны ломаться. Индукционная закачка — идеальное решение для этого.

Как это работает? Физика процесса

1. Создание вихревых токов (токи Фуко) — Деталь помещают внутрь медной катушки (индуктора), по которой пропускают переменный ток очень высокой частоты. Этот ток создаёт вокруг катушки мощное, быстро меняющееся магнитное поле.
Когда в это поле попадает металлическая заготовка, в её поверхностном слое наводятся вихревые электрические токи. Именно они и разогревают металл. По сути, деталь нагревает сама себя изнутри!

2. Скин-эффект — Здесь вступает в дело ключевой физический принцип — скин-эффект. Переменный ток высокой частоты стремится течь не по всему сечению проводника, а только по его поверхности. Чем выше частота тока в катушке, тем тоньше разогреваемый слой. Это позволяет с хирургической точностью контролировать глубину закалки, просто меняя частоту генератора.

3. Мгновенное охлаждение (закалка) — Как только поверхностный слой металла раскаляется до нужной температуры (для стали это обычно 800-1000°C), его тут же обдают мощными струями воды или водяного тумана. Резкое охлаждение фиксирует кристаллическую структуру стали в напряжённом состоянии, превращая её в мартенсит — сверхтвёрдую и хрупкую фазу. Именно это и делает поверхность такой прочной. #физика #металлы #технологии #производство #наука #закалка #индукционныйнагрев

🧲 Электромагнитное торможение колебаний маятника

🔥 Индукционный нагрев

💫 «Гроб Мухаммеда»

🧲 Как работают трансформаторы?

⚡️ Основные физические понятия электродинамики (Леннаучфильм)

Взаимодействие зарядов. Электростатическая индукция

💫 Исследование электрических полей. Опыт по физике

⚡️ Уравнения Максвелла

⚙️ Электромагнитная подвеска 🧲

🟢 Эффект Мейсснера

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍32262🔥2🤔1
🔥 Этот обогреватель работает на «реактивной тяге» внутри себя 😖

Разберем физику обогревателя, в котором нет насоса, но который способен подсасывать топливо самостоятельно. Только огонь, медная трубка и хитрый закон физики, который заставляет топливо самотеком лететь в сопло. В чем фокус? Разбираем физику процесса

▪️ 1. Нагрев и расширение. Мы подносим источник огня (например, паяльную лампу) к началу полой медной трубки, свернутой в змеевик. Трубка быстро нагревается.

▪️ 2. Создание тяги. Воздух внутри нагретого участка трубки резко расширяется, его давление падает. Поскольку другой конец трубки опущен в емкость с топливом (например, соляркой или отработанным маслом), возникает разница давлений.

▪️ 3. Эффект эжекции (подсоса). Горячий воздух с большой скоростью вырывается из дальнего конца трубки. Этот быстрый поток создает зону низкого давления, которая, как мощный насос, начинает затягивать пары топлива из емкости и подсасывать новую порцию жидкости. Возникает что-то вроде реактивной струи, но внутри системы. Получается самоподдерживающаяся система: пламя нагревает трубку -> нагрев создает тягу -> тяга всасывает новое топливо -> топливо сгорает, поддерживая пламя.

⚙️ Как собрать эффективную конструкцию?

▫️Медная трубка: диаметром 6-10 мм, длиной 1.5-2 метра. Медь отлично проводит тепло.
▫️Емкость для топлива: металлическая, с герметичной, но не полностью закрытой крышкой (нужен байпас для подсоса воздуха).
▫️Основание: негорючее (кирпичи, металл).
▫️Топливо: хорошо подходит керосин, дизель (солярка) или отработанное моторное масло.

1. Форма змеевика. Сверните трубку в плотную спираль. Так площадь нагрева будет максимальной, и процесс парообразования пойдет интенсивнее.
2. Диаметр и длина. Слишком тонкая трубка может засориться, слишком толстая — будет плохо прогреваться. Длина должна быть достаточной для создания хорошей тяги, но не чрезмерной.
3. Положение «сопла». Выходной конец трубки должен быть направлен в зону горения. Это создаст замкнутый цикл: вырывающиеся газы будут поджигать всасываемое топливо, поддерживая стабильный факел.
4. Предварительный нагрев. Систему нужно запустить. Сначала вы прогреваете змеевик сторонним источником огня 30-60 секунд. Как только слышите характерное «шипение» и видите, как топливо начинает втягиваться в трубку, — процесс пошел! Источник огня можно убрать (но не всегда, зависит от конструкции).

💨 Принцип реактивного движения, используемый здесь, — это красивая демонстрация законов термодинамики и газодинамики. На практике такие системы капризны, но невероятно зрелищны и отлично показывают, как можно обойтись без сложной механики, используя лишь знание физики. Кто-нибудь собирал нечто подобное? Делитесь опытом . #видеоуроки #physics #физика #опыты #термодинамика #эксперименты #горение

🔥 Физика в чашке с водой

💨 Паровой или реактивный двигатель ?

🚀 Что будет, если добавить жидкий газ в бутылку с водой

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
3🔥20👍118🙈2
🔥 Полезные вопросы по эффективности горения

По прошлому посту про реактивную горелку один из подписчиков задал очень хороший вопрос:
Зачем собирать такую гарелку-обогреватель, если можно просто сжечь бензин в тарелке и тепла будет столько же.

Действительно ли это так? Один из подвохов здесь заключается в том, что важно не количество тепла, а качество процесса и топлива.

▪️1. Тип топлива и его стоимость (Главный аргумент)

«Просто сжечь бензин»: Вы используете дорогое, высокоочищенное топливо. Это как топить камин долларовыми купюрами — да, тепло будет, но экономически невыгодно.
Горелка с эжекцией: Она идеально подходит для сжигания дешевых, низкокачественных и часто бесплатных видов топлива:
— Отработанное моторное масло (отработка). Его просто выбрасывают или дорого утилизируют. Для такой горелки — это идеальное и бесплатное топливо.
— Солярка (дизельное топливо). Дешевле бензина.
— Мазут.
— Растительные масла.
Эта горелка — не про бензин, а про утилизацию отходов и экономию. Вы получаете тепло практически даром.

▪️2. Качество сгорания и безопасность

«Просто сжечь бензин»: Вы плеснули бензин в миску и поднесли спичку. Что получится?
Горит открытое горючее тело — чудовищная пожароопасность. Любая искра, перевернутая емкость — и пожар.
Копоть и вредные выбросы. Бензин сгорает неполностью, выделяя сажу и токсичные вещества (угарный газ). Вы будете этим дышать.
Горелка с эжекцией:
Топливо предварительно испаряется/распыляется. Проходя по раскаленной трубке, жидкое топливо превращается в пар или мелкодисперсную взвесь. Это смешивается с воздухом и сгорает гораздо полнее.
Пламя стабилизировано. Оно горит на выходе из сопла, а не на поверхности открытой жидкости. Это стабильный, управляемый факел.
Выше температура и КПД. Из-за лучшего смесеобразования КПД такого сжигания (хоть и неидеальный) все равно выше, чем у открытой лужи. (т.е. и расход топлива меньше)
Эта конструкция безопаснее (относительно, конечно) и экологичнее, так как обеспечивает более полное сгорание.

▪️3. Автоматизация и стабильность

«Просто сжечь бензин»: Это одноразовый процесс. Сгорело — и все. Чтобы греть постоянно, нужно постоянно подливать топливо, что неудобно и опасно.
Горелка с эжекцией: Это саморегулирующаяся система. Пламя само подсасывает ровно столько топлива, сколько может испарить и сжечь. Вы залили бак — и она работает стабильно долгое время без вашего участия.

Тепла действительно будет примерно одинаково. Но эта горелка создана для другого:
1. Экономия: Она превращает бесплатные или очень дешевые отходы (отработка) в полезное тепло. Сравнивать нужно не с бензином, а со стоимостью дров, угля или электричества.
2. Эффективность и безопасность: Она сжигает это "грязное" топливо гораздо лучше и безопаснее, чем примитивное открытое горение.
3. Удобство: Это работоспособный, хоть и кустарный, нагревательный прибор, а не просто эксперимент. #задачи #physics #физика #опыты #термодинамика #эксперименты #горение

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍245🔥5🤔3❤‍🔥1🤯1🤝1
This media is not supported in your browser
VIEW IN TELEGRAM
⚡️ Первые цветные кадры термоядерного синтеза: как это сняли? 🥺

Компания Tokamak Energy совершила небольшой, но очень важный прорыв в визуализации термоядерных процессов. Они впервые опубликовали цветное высокоскоростное видео работы своего сферического токамака ST40.

▪️ 1. Невероятная детализация: Камера снимала с частотой 16 000 кадров в секунду. Это позволяет разглядеть мельчайшие нестабильности и поведение плазменного шнура — то, что глазом или обычной камерой просто не увидеть.

▪️ 2. Цвет имеет значение: В отличие от черно-белых снимков, цвет помогает лучше анализировать распределение температуры и примесей в плазме.

▪️ 3. Данные, а не просто картинка: Эти кадры — не для красоты. Они критически важны для проверки и настройки компьютерных моделей, которые предсказывают поведение плазмы.

По сути, ученые получили «рентгеновское зрение» для своего реактора. Каждый такой кадр приближает нас к моменту, когда термоядерная энергия станет чистым и неиссякаемым источником энергии для человечества.

Watch one of our latest plasma pulses in our ST40 tokamak, filmed using a high-speed colour camera at an incredible 16,000 frames per second. Each pulse lasts around a fifth of a second. What you’re seeing is mostly visible light from the plasma’s edge, glowing pink. The core is simply too hot to emit visible light. In this footage, lithium is dropped into the plasma in the top right of the footage. As it interacts, it glows red when excited, then turns green as it becomes ionised, losing an electron. From there, it traces the magnetic field lines, revealing the plasma’s path around the tokamak. Lithium is the focus of our $52 million ST40 upgrade programme, in partnership with U.S. Department of Energy and the UK Department for Energy Security and Net Zero. This builds on pioneering work by Princeton Plasma Physics Laboratory and others that shows lithium can significantly improve plasma performance.

This video comes from ongoing research into X-point radiator (XPR) regimes, a promising operating mode for future fusion power plants that aims to cool the plasma before it reaches plasma-facing components (PFCs), helping to reduce wear without compromising performance. #физика #ядерная_физика #атомная_физика #электродинамика #магнетизм #плазма #physics #science #наука #квантовая_физика

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥4318👍72🤔2😍1