Physics.Math.Code
143K subscribers
5.2K photos
2.07K videos
5.81K files
4.46K links
VK: vk.com/physics_math
Чат инженеров: @math_code
Учебные фильмы: @maths_lib
Репетитор IT mentor: @mentor_it
YouTube: youtube.com/c/PhysicsMathCode

№ 6045941532

Обратная связь: @physicist_i
Download Telegram
Media is too big
VIEW IN TELEGRAM
⚡️ Самодельная зажигалка с дугой от батарейки на 3.7 V

Принцип работы основан на импульсном повышающем преобразователе . Можно использовать катушку индуктивности (повышающий трансформатор) для создания высоковольтного импульса, который пробивает воздушный зазор. Схема генерирует импульсы высокого напряжения (тысячи вольт), достаточные для создания болезненного удара током.

⚠️ Никогда не замыкайте выходные электроды напрямую. Это мгновенно выведет компоненты из строя. Используемая батарейка AAAA имеет небольшую емкость, но при коротком замыкании может сильно нагреться. Дуга имеет очень высокую температуру. Не прикасайтесь к ней и не направляйте на легковоспламеняющиеся материалы. Держите зажигалку так, чтобы дуга не касалась металлических частей плиты, чтобы избежать короткого замыкания.

По сути у нас схема блокинг-генератора на одном транзисторе. Это классическая и очень эффективная схема для таких задач. Опишем примерный принцип работы:
1. Ток от батареи течет через первичную обмотку катушки, открывая транзистор.
2. Магнитное поле в катушке накапливает энергию.
3. В определенный момент ток перестает расти, и поле начинает схлопываться.
4. Это схлопывание создает во вторичной (высоковольтной) обмотке короткий импульс высокого напряжения, который и создает дугу.

Необходимые компоненты:
1. Источник питания: 1 батарейка AAAA (3.7V)
2. Транзистор: NPN, желательно мощный и высоковольтный. Идеально подойдут: 2N3055 , MJE13007 , BD139, КТ815.
3. Резистор: 1 кОм (R1), мощностью 0.25 - 0.5 Вт.
4. Катушка индуктивности (сердечник): Лучше всего подойдет ферритовый стержень от старого радиоприемника. Можно разобрать ненужный импульсный трансформатор или дроссель.
5. Обмоточный провод:
— Первичная обмотка (толстая): Медный эмалированный провод диаметром 0.5 - 0.8 мм. Длина ~1 метр.
— Вторичная обмотка (тонкая): Медный эмалированный провод диаметром 0.1 - 0.2 мм. Длина ~5-10 метров.
6. Электроды: Два оголенных провода или кусочки вольфрамового электрода (идеально, так как они не обгорают). Можно использовать толстые канцелярские скрепки.
7. Корпус и монтаж: Монтажная плата или кусок текстолита, провода, кнопка без фиксации (опционально, но желательно для экономии батареи), термоусадка/изолента.
#физика #схемотехника #электродинамика #опыты #эксперименты #physics #видеоуроки #электроника #science

🔥 Свечение газов вблизи катушки Тесла

⚡️ Arduino в качестве управляющего элемента в большом станке — это возможно

💽 Самые массовые HDD Seagate ST-225

💥 Лазерное скальпирование микросхемы

📕 Основы микроэлектроники [2001] Степаненко И.П.

📘 Практикум начинающего радиолюбителя [1984] (2-е изд., перераб. и доп.) Борисов В.Г.

⚡️ Ионофон

📚 Искусство схемотехники, 4-е издание (в 3 томах) [1993—2014] Пауль Хоровиц, Уинфилд Хилл

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍63🔥22124🆒1
Преподаватели вузов и школ, новость для вас

26 октября пройдет неконференция STEM up от Центрального университета и образовательного бюро «Розетка». Сможете узнать, как новый для России STEM-подход объединяет математику, естественные науки, инженерию и технологии.

Что вас ждет:
— Разбор кейсов междисциплинарных и проектных подходов в образовании.
— Лекции от преподавателей STEM и смежных областей из Центрального университета, Лицея НИУ ВШЭ, «Лиги инженеров» и других организаций.
— Обзор ресурсов и площадок для STEM-проектов.
— Педагогические воркшопы и мастер-классы.

Мероприятие пройдет в кампусе Центрального университета в Москве.

Поучаствовать можно бесплатно. Зарегистрируйтесь.
🔥13👍53😢1👨‍💻1
📚 Книги по Методам Математической Физики (ММФ)

💾 Скачать книги

Математическая физика — теория математических моделей физических явлений. Она относится к математическим наукам; критерий истины в ней — математическое доказательство. Однако, в отличие от чисто математических наук, в математической физике исследуются физические задачи на математическом уровне, а результаты представляются в виде теорем, графиков, таблиц и т. д. и получают физическую интерпретацию. При таком широком понимании математической физики к ней следует относить и такие разделы механики, как теоретическая механика, гидродинамика и теория упругости.
#ммф #математика #физика #методы_математической_физики #physics #math #science #наука #подборка_книг

☕️ Для тех, кто захочет задонать на кофе: ВТБ: +79616572047 (СБП)

💡 Physics.Math.Code // @physics_lib
117👍16🔥5❤‍🔥2🤩21
📚_Книги_по_Методам_Математической_Физики_ММФ.zip
374.9 MB
📚 Книги по Методам Математической Физики (ММФ)

📘 Алексеев Г.В. Классические методы математической физики. Часть 1
📗 Алексеев Г.В. Классические методы математической физики. Часть 2
📕 Горюнов А.Ф. Методы математической физики в примерах и задачах. В 2 т. Том I
📙 Горюнов А.Ф. Методы математической физики в примерах и задачах. В 2 т. Том II
📔 Джеффрис Г., Свирлс Б. - Методы математическрй физики (том 1) - 1969
📘 Джеффрис Г., Свирлс Б. - Методы математическрй физики (том 2) - 1970
📗 Джеффрис Г., Свирлс Б. - Методы математическрй физики (том 3) - 1970
📕 Левин В.И. Методы математической физики
📓 Несис Е.И. Методы математической физики
📒 Очан Ю.С. Методы математической физики
📘 Треногин В.А., Недосекина И.С. Методы математической физики
📙 Фарлоу С. Уравнения с частными производными для научных работников и инженеров

#ммф #математика #физика #методы_математической_физики #physics #math #science #наука #подборка_книг

💡 Physics.Math.Code // @physics_lib
2👍4113🔥13🤝2❤‍🔥1
〰️ Акустическая левитация — это метод взвешивания вещества в воздухе против силы тяжести с использованием давления акустического излучения от звуковых волн высокой интенсивности. Метод работает по тем же принципам, что и акустический пинцет, используя силы акустического излучения. Однако акустические пинцеты, как правило, представляют собой устройства небольшого размера, которые работают в текучей среде и в меньшей степени подвержены влиянию силы тяжести, тогда как акустическая левитация в первую очередь связана с преодолением силы тяжести.

Обычно используются звуковые волны на ультразвуковых частотах, таким образом, не создавая звука, слышимого людям. В первую очередь это связано с высокой интенсивностью звука, необходимой для противодействия силе тяжести. Однако были случаи использования слышимых частот.

Существуют различные методы генерации звука, но наиболее распространенным является использование пьезоэлектрических преобразователей, которые могут эффективно генерировать сигналы высокой амплитуды на желаемых частотах. Этим методом сложнее управлять, чем другими, такими как электромагнитная левитация, но его преимущество заключается в возможности левитации непроводящих материалов.

Хотя изначально акустическая левитация была статичной, она прошла путь от неподвижной левитации до динамического управления парящими объектами - способности, полезной в фармацевтической и электронной промышленности. Это динамическое управление было впервые реализовано с помощью прототипа с массивом квадратных акустических излучателей, похожих на шахматную доску, которые перемещают объект с одного квадрата на другой, медленно снижая интенсивность звука, излучаемого одним квадратом, при одновременном увеличении интенсивности звука из другого, позволяя объекту перемещаться практически вертикально вверх. Совсем недавно разработка плат преобразователей с фазированной антенной решеткой позволила более произвольно управлять несколькими частицами и каплями одновременно. Недавние достижения также привели к значительному снижению цены на эту технологию. «TinyLev» — это акустический левитатор, который может быть сконструирован из широко доступных недорогих готовых компонентов и одной рамки, напечатанной на 3D-принтере.

Первая демонстрация возможности акустической левитации была сделана в экспериментах с трубкой Кундта в 1866 году. Эксперимент в резонансной камере продемонстрировал, что частицы могут собираться в узлах стоячей волны силами акустического излучения. Однако первоначальный эксперимент проводился с целью расчета длин волн и, следовательно, скорости звука внутри газа.

Первая левитация была продемонстрирована Бюксом и Мюллером в 1933 году, которые левитировали капли спирта между кристаллом кварца и отражателем. Следующий шаг вперед был сделан Хилари Сент-Клер, которая интересовалась силами акустического излучения в первую очередь для их применения при агломерации частиц пыли для использования в горнодобывающей промышленности. Он создал первое электромагнитное устройство для создания амплитуд возбуждения, необходимых для левитации, затем перешел к левитации более крупных и тяжелых предметов, включая монету.

#физика #наука #science #physics #акустика #волны #опыты #эксперименты #видеоуроки

💡 Physics.Math.Code // @physics_lib
31814👍10🔥6