Мобильная разработка
4.13K subscribers
189 photos
26 videos
1 file
259 links
@haarrp - admin

@itchannels_telegram - 🔥лучшие ит-каналы

@javascriptv - продвинутый javascript

@JavaScript_testit- js тесты

@programming_books_it - бесплатные it книги

@ai_machinelearning_big_data - ml
Download Telegram
Forwarded from Machinelearning
📌 EXAONE 4.0 — новая LLM от LG, уверенно конкурирующая с топами

LG AI Research представила EXAONE 4.0 (предыдущие версии) , свою ризонинг-модель. Разработчики называют ее «гибридным ИИ», и это не просто маркетинговый ход. По сути, это сплав классических языковых способностей с мощным механизмом логических рассуждений, унаследованным от предшественника EXAONE Deep.

Главная фишка — пошаговый подход к решению задач, основанный на выстраивании цепочки мыслей. Это позволяет модели хорошо справляться не только с текстами, но и со сложными областями вроде математики, науки и программирования.

В LG решили не размениваться на мелочи и не придумывать собственные удобные бенчмарки, а сразу вышли на глобальную арену.

Модель показала себя более чем достойно на самых сложных и актуальных тестах. Например, на GPQA-Diamond, который проверяет научные знания, она набрала 75.4 балла, а в математическом AIME 2025 — все 85.3. Судя по графикам, EXAONE 4.0 уверенно конкурирует как с открытыми, так и с передовыми закрытыми моделями на английском языке, а также демонстрирует отличные результаты на корейском и недавно добавленном испанском.

🟢На бенчмаркх видно: EXAONE 4.0 уверенно конкурирует с передовыми закрытыми и открытыми LLM на английском, а также остаётся одной из лучших на корейском рынке.

🟢 Модель вышла в двух вариантах:
1. EXAONE 4.0 Professional (32B параметров) — заточена под медицину, право и другие сложные предметные области. Уже сдала 6 национальных сертификационных экзаменов в Корее.
2. EXAONE 4.0 On‑Device (1.2B параметров) — работает офлайн прямо на устройстве. При этом она вдвое компактнее, но быстрее предыдущей версии. Идеально для задач с требованиями к приватности и скорости отклика.

Появилась модель, которая решает больше edge‑кейсов, чем Qwen‑235B, но при этом требует в 7 раз меньше памяти.
Еще:
- Обучена на 14T токенах.
- Поддерживает Model Context Protocol (MCP)
- Поддерживает**Function Calling** — интеграция с внешними инструментами и API прямо через LLM.

📌 Многоязычие, высокая точность, локальная работа — всё это делает EXAONE одним из самых интересных релизов LLM‑рынка в 2025 году.

🟠Подробнее: https://www.lgresearch.ai/blog/view?seq=576
🟠Model: https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B

@ai_machinelearning_big_data

#AI #ML #LLM #EXAONE #LG
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍1🔥1
✔️ GenAI прямо на устройстве: Chrome, Chromebook Plus и Pixel Watch с LiteRT-LM*

Google выпустили LiteRT-LM - фреймворк для запуска LLM прямо на устройстве (offline), с минимальной задержкой и без API-вызовов.


Если вы пилите приложения, это полезная штука, потому что:
- Работает на устройстве: нет задержек от удалённых серверов
- Нет расходов на API
- Дает доступ к Локальному GenAI

🔍 Основное
- LiteRT-LM уже используется внутри Gemini Nano / Gemma в Chrome, Chromebook Plus и Pixel Watch.
- Открытый C++ интерфейс (preview) для интеграции в кастомные решения.
- Архитектура: Engine + Session
  • Engine хранит базовую модель, ресурсы - общий для всех функций
  • Session - контекст для отдельных задач, с возможностью клонирования, копирования “по записи” (Copy-on-Write) и лёгких переключений
- Поддержка аппаратного ускорения (CPU / GPU / NPU) и кроссплатформенность (Android, Linux, macOS, Windows и др.)
- Для Pixel Watch используется минимальный “pipeline” - только необходимые компоненты - чтобы уложиться в ограничения памяти и размера бинарей

Google опенсорснули целый стек для запуска GenAI на устройствах:

- LiteRT быстрый «движок», который запускает отдельные AI-модели на устройстве.

- LiteRT-LM - интерфейс C++ для работы с LLM. Он объединяет сразу несколько инстурментов : кэширование промптов, хранение контекста, клонирование сессий и т.д.

- LLM Inference API - готовые интерфейсы для разработчиков (Kotlin, Swift, JS). Работают поверх LiteRT-LM, чтобы можно было легко встраивать GenAI в приложения.

🟠Подробнее: https://developers.googleblog.com/en/on-device-genai-in-chrome-chromebook-plus-and-pixel-watch-with-litert-lm/

#AI #Google #LiteRT #LiteRTLM #GenAI #EdgeAI #OnDeviceAI #LLM
Please open Telegram to view this post
VIEW IN TELEGRAM
1