#python #amd #cuda #gpt #inference #inferentia #llama #llm #llm_serving #llmops #mlops #model_serving #pytorch #rocm #tpu #trainium #transformer #xpu
vLLM is a library that makes it easy, fast, and cheap to use large language models (LLMs). It is designed to be fast with features like efficient memory management, continuous batching, and optimized CUDA kernels. vLLM supports many popular models and can run on various hardware including NVIDIA GPUs, AMD CPUs and GPUs, and more. It also offers seamless integration with Hugging Face models and supports different decoding algorithms. This makes it flexible and easy to use for anyone needing to serve LLMs, whether for research or other applications. You can install vLLM easily with `pip install vllm` and find detailed documentation on their website.
https://github.com/vllm-project/vllm
vLLM is a library that makes it easy, fast, and cheap to use large language models (LLMs). It is designed to be fast with features like efficient memory management, continuous batching, and optimized CUDA kernels. vLLM supports many popular models and can run on various hardware including NVIDIA GPUs, AMD CPUs and GPUs, and more. It also offers seamless integration with Hugging Face models and supports different decoding algorithms. This makes it flexible and easy to use for anyone needing to serve LLMs, whether for research or other applications. You can install vLLM easily with `pip install vllm` and find detailed documentation on their website.
https://github.com/vllm-project/vllm
GitHub
GitHub - vllm-project/vllm: A high-throughput and memory-efficient inference and serving engine for LLMs
A high-throughput and memory-efficient inference and serving engine for LLMs - vllm-project/vllm
❤1
#python #cuda #deepseek #deepseek_llm #deepseek_v3 #inference #llama #llama2 #llama3 #llama3_1 #llava #llm #llm_serving #moe #pytorch #transformer #vlm
SGLang is a tool that makes working with large language models and vision language models much faster and more manageable. It has a fast backend runtime that optimizes model performance with features like prefix caching, continuous batching, and quantization. The frontend language is flexible and easy to use, allowing for complex tasks like chained generation calls and multi-modal inputs. SGLang supports many different models and has an active community behind it. This means you can get your models running quickly and efficiently, saving time and resources. Additionally, the extensive documentation and community support make it easier to get started and resolve any issues.
https://github.com/sgl-project/sglang
SGLang is a tool that makes working with large language models and vision language models much faster and more manageable. It has a fast backend runtime that optimizes model performance with features like prefix caching, continuous batching, and quantization. The frontend language is flexible and easy to use, allowing for complex tasks like chained generation calls and multi-modal inputs. SGLang supports many different models and has an active community behind it. This means you can get your models running quickly and efficiently, saving time and resources. Additionally, the extensive documentation and community support make it easier to get started and resolve any issues.
https://github.com/sgl-project/sglang
GitHub
GitHub - sgl-project/sglang: SGLang is a fast serving framework for large language models and vision language models.
SGLang is a fast serving framework for large language models and vision language models. - sgl-project/sglang