GitHub Trends
10.1K subscribers
15.3K links
See what the GitHub community is most excited about today.

A bot automatically fetches new repositories from https://github.com/trending and sends them to the channel.

Author and maintainer: https://github.com/katursis
Download Telegram
#python #automation #data #data_engineering #data_ops #data_science #infrastructure #ml_ops #observability #orchestration #pipeline #prefect #python #workflow #workflow_engine

Prefect is a tool that helps you automate and manage data workflows in Python. It makes it easy to turn your scripts into reliable and flexible workflows that can handle unexpected changes. With Prefect, you can schedule tasks, retry failed operations, and monitor your workflows. You can install it using `pip install -U prefect` and start creating workflows with just a few lines of code. This helps data teams work more efficiently, reduce errors, and save time. You can also use Prefect Cloud for more advanced features and support.

https://github.com/PrefectHQ/prefect
#other #awesome #awesome_list #data_mining #deep_learning #explainability #interpretability #large_scale_machine_learning #large_scale_ml #machine_learning #machine_learning_operations #ml_operations #ml_ops #mlops #privacy_preserving #privacy_preserving_machine_learning #privacy_preserving_ml #production_machine_learning #production_ml #responsible_ai

This repository provides a comprehensive list of open-source libraries and tools for deploying, monitoring, versioning, scaling, and securing machine learning models in production. Here are the key benefits The repository includes a wide range of tools categorized into sections such as adversarial robustness, agentic workflow, AutoML, computation load distribution, data labelling and synthesis, data pipelines, data storage optimization, data stream processing, deployment and serving, evaluation and monitoring, explainability and fairness, feature stores, and more.

- **Production Readiness** The repository is actively maintained and contributed to by a community of developers, ensuring that the tools are up-to-date and well-supported.

- **Ease of Use** Tools for optimized computation, model storage optimization, and neural search and retrieval help in improving the performance and efficiency of machine learning models.

- **Privacy and Security**: Libraries focused on privacy and security, such as federated learning and homomorphic encryption, ensure that sensitive data is protected during model training and deployment.

Using this repository, you can streamline your machine learning workflows, improve model performance, and ensure robustness and security in your production environments.

https://github.com/EthicalML/awesome-production-machine-learning
🔥1