#python #data_drift #data_science #data_validation #deep_learning #html_report #jupyter_notebook #machine_learning #ml #mlops #model_monitoring #model_validation #pandas_dataframe #pytorch
https://github.com/deepchecks/deepchecks
https://github.com/deepchecks/deepchecks
GitHub
GitHub - deepchecks/deepchecks: Deepchecks: Tests for Continuous Validation of ML Models & Data. Deepchecks is a holistic open…
Deepchecks: Tests for Continuous Validation of ML Models & Data. Deepchecks is a holistic open-source solution for all of your AI & ML validation needs, enabling to thoroughly test ...
#python #ai #awesome #data_science #machine_learning #machine_learning_engineering #ml #mle #mlops
https://github.com/kelvins/awesome-mlops
https://github.com/kelvins/awesome-mlops
GitHub
GitHub - kelvins/awesome-mlops: :sunglasses: A curated list of awesome MLOps tools
:sunglasses: A curated list of awesome MLOps tools - kelvins/awesome-mlops
#python #big_data #data_engineering #data_quality #data_science #feature_store #features #machine_learning #ml #mlops
https://github.com/feast-dev/feast
https://github.com/feast-dev/feast
GitHub
GitHub - feast-dev/feast: The Open Source Feature Store for AI/ML
The Open Source Feature Store for AI/ML. Contribute to feast-dev/feast development by creating an account on GitHub.
#python #ai #automl #data_science #deep_learning #devops_tools #hacktoberfest #llm #llmops #machine_learning #metadata_tracking #ml #mlops #pipelines #production_ready #pytorch #tensorflow #workflow #zenml
https://github.com/zenml-io/zenml
https://github.com/zenml-io/zenml
GitHub
GitHub - zenml-io/zenml: ZenML 🙏: One AI Platform from Pipelines to Agents. https://zenml.io.
ZenML 🙏: One AI Platform from Pipelines to Agents. https://zenml.io. - zenml-io/zenml
#go #data_science #deep_learning #distributed_training #hyperparameter_optimization #hyperparameter_search #hyperparameter_tuning #kubernetes #machine_learning #ml_infrastructure #ml_platform #mlops #pytorch #tensorflow
https://github.com/determined-ai/determined
https://github.com/determined-ai/determined
GitHub
GitHub - determined-ai/determined: Determined is an open-source machine learning platform that simplifies distributed training…
Determined is an open-source machine learning platform that simplifies distributed training, hyperparameter tuning, experiment tracking, and resource management. Works with PyTorch and TensorFlow. ...
#python #ai #ai_alignment #ai_safety #ai_test #ai_testing #artificial_intelligence #cicd #explainable_ai #llmops #machine_learning #machine_learning_testing #ml #ml_safety #ml_test #ml_testing #ml_validation #mlops #model_testing #model_validation #quality_assurance
https://github.com/Giskard-AI/giskard
https://github.com/Giskard-AI/giskard
GitHub
GitHub - Giskard-AI/giskard-oss: 🐢 Open-Source Evaluation & Testing library for LLM Agents
🐢 Open-Source Evaluation & Testing library for LLM Agents - Giskard-AI/giskard-oss
#python #ai #data #data_structures #database #long_term_memory #machine_learning #ml #mlops #mongodb #pytorch #scikit_learn #sklearn #torch #transformers #vector_search
https://github.com/SuperDuperDB/superduperdb
https://github.com/SuperDuperDB/superduperdb
GitHub
GitHub - superduper-io/superduper: Superduper: End-to-end framework for building custom AI applications and agents.
Superduper: End-to-end framework for building custom AI applications and agents. - superduper-io/superduper
#jupyter_notebook #ai #aihub #argo #automl #gpt #inference #kubeflow #kubernetes #llmops #mlops #notebook #pipeline #pytorch #spark #vgpu #workflow
https://github.com/tencentmusic/cube-studio
https://github.com/tencentmusic/cube-studio
GitHub
GitHub - tencentmusic/cube-studio: cube studio开源云原生一站式机器学习/深度学习/大模型AI平台,mlops算法链路全流程,算力租赁平台,notebook在线开发,拖拉拽任务流pipeline编排,多机多卡…
cube studio开源云原生一站式机器学习/深度学习/大模型AI平台,mlops算法链路全流程,算力租赁平台,notebook在线开发,拖拉拽任务流pipeline编排,多机多卡分布式训练,超参搜索,推理服务VGPU虚拟化,边缘计算,标注平台自动化标注,deepseek等大模型sft微调/奖励模型/强化学习训练,vllm/ollama/mindie大模型多机推理,私有知识库,AI模型市场...
👍3
#go #approximate_nearest_neighbor_search #generative_search #grpc #hnsw #hybrid_search #image_search #information_retrieval #mlops #nearest_neighbor_search #neural_search #recommender_system #search_engine #semantic_search #semantic_search_engine #similarity_search #vector_database #vector_search #vector_search_engine #vectors #weaviate
Weaviate is a powerful, open-source vector database that uses machine learning to make your data searchable. It's fast, scalable, and flexible, allowing you to vectorize your data at import or upload your own vectors. Weaviate supports various modules for integrating with popular AI services like OpenAI, Cohere, and Hugging Face. It's designed for production use with features like scaling, replication, and security. You can use Weaviate for tasks beyond search, such as recommendations, summarization, and integration with neural search frameworks. It offers APIs in GraphQL, REST, and gRPC and has client libraries for several programming languages. This makes it easy to build applications like chatbots, recommendation systems, and image search tools quickly and efficiently. Joining the Weaviate community provides access to tutorials, demos, blogs, and forums to help you get started and stay updated.
https://github.com/weaviate/weaviate
Weaviate is a powerful, open-source vector database that uses machine learning to make your data searchable. It's fast, scalable, and flexible, allowing you to vectorize your data at import or upload your own vectors. Weaviate supports various modules for integrating with popular AI services like OpenAI, Cohere, and Hugging Face. It's designed for production use with features like scaling, replication, and security. You can use Weaviate for tasks beyond search, such as recommendations, summarization, and integration with neural search frameworks. It offers APIs in GraphQL, REST, and gRPC and has client libraries for several programming languages. This makes it easy to build applications like chatbots, recommendation systems, and image search tools quickly and efficiently. Joining the Weaviate community provides access to tutorials, demos, blogs, and forums to help you get started and stay updated.
https://github.com/weaviate/weaviate
GitHub
GitHub - weaviate/weaviate: Weaviate is an open-source vector database that stores both objects and vectors, allowing for the combination…
Weaviate is an open-source vector database that stores both objects and vectors, allowing for the combination of vector search with structured filtering with the fault tolerance and scalability of ...
#javascript #annotation #annotation_tool #annotations #boundingbox #computer_vision #data_labeling #dataset #datasets #deep_learning #image_annotation #image_classification #image_labeling #image_labelling_tool #label_studio #labeling #labeling_tool #mlops #semantic_segmentation #text_annotation #yolo
Label Studio is a free, open-source tool that helps you label different types of data like images, audio, text, videos, and more. It has a simple and user-friendly interface that makes it easy to prepare or improve your data for machine learning models. You can customize it to fit your needs and export labeled data in various formats. It supports multi-user labeling, multiple projects, and integration with machine learning models for pre-labeling and active learning. You can install it locally using Docker, pip, or other methods, or deploy it in cloud services like Heroku or Google Cloud Platform. This tool streamlines your data labeling process and helps you create more accurate ML models.
https://github.com/HumanSignal/label-studio
Label Studio is a free, open-source tool that helps you label different types of data like images, audio, text, videos, and more. It has a simple and user-friendly interface that makes it easy to prepare or improve your data for machine learning models. You can customize it to fit your needs and export labeled data in various formats. It supports multi-user labeling, multiple projects, and integration with machine learning models for pre-labeling and active learning. You can install it locally using Docker, pip, or other methods, or deploy it in cloud services like Heroku or Google Cloud Platform. This tool streamlines your data labeling process and helps you create more accurate ML models.
https://github.com/HumanSignal/label-studio
GitHub
GitHub - HumanSignal/label-studio: Label Studio is a multi-type data labeling and annotation tool with standardized output format
Label Studio is a multi-type data labeling and annotation tool with standardized output format - HumanSignal/label-studio
#python #analytics #dagster #data_engineering #data_integration #data_orchestrator #data_pipelines #data_science #etl #metadata #mlops #orchestration #python #scheduler #workflow #workflow_automation
Dagster is a tool that helps you manage and automate your data workflows. You can define your data assets, like tables or machine learning models, using Python functions. Dagster then runs these functions at the right time and keeps your data up-to-date. It offers features like integrated lineage and observability, making it easier to track and manage your data. This tool is useful for every stage of data development, from local testing to production, and it integrates well with other popular data tools. Using Dagster, you can build reusable components, spot data quality issues early, and scale your data pipelines efficiently. This makes your work more productive and helps maintain control over complex data systems.
https://github.com/dagster-io/dagster
Dagster is a tool that helps you manage and automate your data workflows. You can define your data assets, like tables or machine learning models, using Python functions. Dagster then runs these functions at the right time and keeps your data up-to-date. It offers features like integrated lineage and observability, making it easier to track and manage your data. This tool is useful for every stage of data development, from local testing to production, and it integrates well with other popular data tools. Using Dagster, you can build reusable components, spot data quality issues early, and scale your data pipelines efficiently. This makes your work more productive and helps maintain control over complex data systems.
https://github.com/dagster-io/dagster
GitHub
GitHub - dagster-io/dagster: An orchestration platform for the development, production, and observation of data assets.
An orchestration platform for the development, production, and observation of data assets. - dagster-io/dagster
👍1
#jupyter_notebook #aws #data_science #deep_learning #examples #inference #jupyter_notebook #machine_learning #mlops #reinforcement_learning #sagemaker #training
SageMaker-Core is a new Python SDK for Amazon SageMaker that makes it easier to work with machine learning resources. It provides an object-oriented interface, which means you can manage resources like training jobs, models, and endpoints more intuitively. The SDK simplifies code by allowing resource chaining, eliminating the need to manually specify parameters. It also includes features like auto code completion, comprehensive documentation, and type hints, making it faster and less error-prone to write code. This helps developers customize their ML workloads more efficiently and streamline their development process.
https://github.com/aws/amazon-sagemaker-examples
SageMaker-Core is a new Python SDK for Amazon SageMaker that makes it easier to work with machine learning resources. It provides an object-oriented interface, which means you can manage resources like training jobs, models, and endpoints more intuitively. The SDK simplifies code by allowing resource chaining, eliminating the need to manually specify parameters. It also includes features like auto code completion, comprehensive documentation, and type hints, making it faster and less error-prone to write code. This helps developers customize their ML workloads more efficiently and streamline their development process.
https://github.com/aws/amazon-sagemaker-examples
GitHub
GitHub - aws/amazon-sagemaker-examples: Example 📓 Jupyter notebooks that demonstrate how to build, train, and deploy machine learning…
Example 📓 Jupyter notebooks that demonstrate how to build, train, and deploy machine learning models using 🧠 Amazon SageMaker. - GitHub - aws/amazon-sagemaker-examples: Example 📓 Jupyter notebooks...
#python #amd #cuda #gpt #inference #inferentia #llama #llm #llm_serving #llmops #mlops #model_serving #pytorch #rocm #tpu #trainium #transformer #xpu
vLLM is a library that makes it easy, fast, and cheap to use large language models (LLMs). It is designed to be fast with features like efficient memory management, continuous batching, and optimized CUDA kernels. vLLM supports many popular models and can run on various hardware including NVIDIA GPUs, AMD CPUs and GPUs, and more. It also offers seamless integration with Hugging Face models and supports different decoding algorithms. This makes it flexible and easy to use for anyone needing to serve LLMs, whether for research or other applications. You can install vLLM easily with `pip install vllm` and find detailed documentation on their website.
https://github.com/vllm-project/vllm
vLLM is a library that makes it easy, fast, and cheap to use large language models (LLMs). It is designed to be fast with features like efficient memory management, continuous batching, and optimized CUDA kernels. vLLM supports many popular models and can run on various hardware including NVIDIA GPUs, AMD CPUs and GPUs, and more. It also offers seamless integration with Hugging Face models and supports different decoding algorithms. This makes it flexible and easy to use for anyone needing to serve LLMs, whether for research or other applications. You can install vLLM easily with `pip install vllm` and find detailed documentation on their website.
https://github.com/vllm-project/vllm
GitHub
GitHub - vllm-project/vllm: A high-throughput and memory-efficient inference and serving engine for LLMs
A high-throughput and memory-efficient inference and serving engine for LLMs - vllm-project/vllm
❤1