GitHub Trends
10.1K subscribers
15.3K links
See what the GitHub community is most excited about today.

A bot automatically fetches new repositories from https://github.com/trending and sends them to the channel.

Author and maintainer: https://github.com/katursis
Download Telegram
#python #billion_parameters #compression #data_parallelism #deep_learning #gpu #inference #machine_learning #mixture_of_experts #model_parallelism #pipeline_parallelism #pytorch #trillion_parameters #zero

DeepSpeed is a powerful tool for training and using large artificial intelligence models quickly and efficiently. It allows you to train models with billions or even trillions of parameters, which is much faster and cheaper than other methods. With DeepSpeed, you can achieve significant speedups, reduce costs, and improve the performance of your models. For example, it can train ChatGPT-like models 15 times faster than current state-of-the-art systems. This makes it easier to work with large language models without needing massive resources, making AI more accessible and efficient for everyone.

https://github.com/microsoft/DeepSpeed
#swift #inference #ios #macos #pretrained_models #speech_recognition #swift #transformers #visionos #watchos #whisper

WhisperKit is a tool that helps your Apple devices recognize speech from audio files or live recordings using OpenAI's Whisper model. It works locally on your device, which means it doesn't need internet connection once set up. To use it, you can add WhisperKit to your Swift project easily through the Swift Package Manager or install a command-line version using Homebrew. This tool is beneficial because it allows you to transcribe audio quickly and efficiently right on your device, making it useful for various applications like voice assistants or transcription services.

https://github.com/argmaxinc/WhisperKit
#cplusplus #android #audio_processing #c_plus_plus #calculator #computer_vision #deep_learning #framework #graph_based #graph_framework #inference #machine_learning #mediapipe #mobile_development #perception #pipeline_framework #stream_processing #video_processing

MediaPipe is a tool that helps you add smart machine learning features to your apps and devices. It works on mobile, web, desktop, and other devices. You can use pre-made solutions for tasks like vision, text, and audio processing, or customize the models to fit your needs. MediaPipe also offers tools like Model Maker and Studio to help you create and test your solutions easily. This makes it easier to delight your customers with innovative features without needing deep machine learning expertise.

https://github.com/google-ai-edge/mediapipe
#jupyter_notebook #aws #data_science #deep_learning #examples #inference #jupyter_notebook #machine_learning #mlops #reinforcement_learning #sagemaker #training

SageMaker-Core is a new Python SDK for Amazon SageMaker that makes it easier to work with machine learning resources. It provides an object-oriented interface, which means you can manage resources like training jobs, models, and endpoints more intuitively. The SDK simplifies code by allowing resource chaining, eliminating the need to manually specify parameters. It also includes features like auto code completion, comprehensive documentation, and type hints, making it faster and less error-prone to write code. This helps developers customize their ML workloads more efficiently and streamline their development process.

https://github.com/aws/amazon-sagemaker-examples
#python #amd #cuda #gpt #inference #inferentia #llama #llm #llm_serving #llmops #mlops #model_serving #pytorch #rocm #tpu #trainium #transformer #xpu

vLLM is a library that makes it easy, fast, and cheap to use large language models (LLMs). It is designed to be fast with features like efficient memory management, continuous batching, and optimized CUDA kernels. vLLM supports many popular models and can run on various hardware including NVIDIA GPUs, AMD CPUs and GPUs, and more. It also offers seamless integration with Hugging Face models and supports different decoding algorithms. This makes it flexible and easy to use for anyone needing to serve LLMs, whether for research or other applications. You can install vLLM easily with `pip install vllm` and find detailed documentation on their website.

https://github.com/vllm-project/vllm
1