#python #convolutional_neural_networks #cvpr #cvpr2020 #efficient_inference #fbnet #imagenet #mobilenet #mobilenetv3 #model_compression #tensorflow
https://github.com/huawei-noah/ghostnet
https://github.com/huawei-noah/ghostnet
GitHub
GitHub - huawei-noah/Efficient-AI-Backbones: Efficient AI Backbones including GhostNet, TNT and MLP, developed by Huawei Noah's…
Efficient AI Backbones including GhostNet, TNT and MLP, developed by Huawei Noah's Ark Lab. - huawei-noah/Efficient-AI-Backbones
#javascript #annotate_images #annotation_tool #audio #classification #computer_vision #dataset #deep_learning #desktop #entity_recognition #image_labeling_tool #image_segmentation #imagenet #named_entity_recognition #semantic_segmentation #text_annotation #text_labeling #udt
https://github.com/UniversalDataTool/universal-data-tool
https://github.com/UniversalDataTool/universal-data-tool
GitHub
GitHub - UniversalDataTool/universal-data-tool: Collaborate & label any type of data, images, text, or documents, in an easy web…
Collaborate & label any type of data, images, text, or documents, in an easy web interface or desktop app. - UniversalDataTool/universal-data-tool
#python #convolutional_neural_networks #deep_learning #imagenet #jax #pytorch #tensorflow2 #transfer_learning
https://github.com/google-research/big_transfer
https://github.com/google-research/big_transfer
GitHub
GitHub - google-research/big_transfer: Official repository for the "Big Transfer (BiT): General Visual Representation Learning"…
Official repository for the "Big Transfer (BiT): General Visual Representation Learning" paper. - google-research/big_transfer
#python #ade20k #image_classification #imagenet #mask_rcnn #mscoco #object_detection #semantic_segmentation #swin_transformer
https://github.com/microsoft/Swin-Transformer
https://github.com/microsoft/Swin-Transformer
GitHub
GitHub - microsoft/Swin-Transformer: This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer…
This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows". - microsoft/Swin-Transformer
#typescript #annotation #annotation_tool #annotations #boundingbox #computer_vision #computer_vision_annotation #dataset #deep_learning #image_annotation #image_classification #image_labeling #image_labelling_tool #imagenet #labeling #labeling_tool #semantic_segmentation #tensorflow #video_annotation
https://github.com/openvinotoolkit/cvat
https://github.com/openvinotoolkit/cvat
GitHub
GitHub - cvat-ai/cvat: Annotate better with CVAT, the industry-leading data engine for machine learning. Used and trusted by teams…
Annotate better with CVAT, the industry-leading data engine for machine learning. Used and trusted by teams at any scale, for data of any scale. - cvat-ai/cvat
#python #deep_learning #image_classification #imagenet #mobilenet #pytorch #regnet #resnet #resnext #senet #shufflenet #swin_transformer
https://github.com/open-mmlab/mmclassification
https://github.com/open-mmlab/mmclassification
GitHub
GitHub - open-mmlab/mmpretrain: OpenMMLab Pre-training Toolbox and Benchmark
OpenMMLab Pre-training Toolbox and Benchmark. Contribute to open-mmlab/mmpretrain development by creating an account on GitHub.
#python #damo_yolo #deep_learning #imagenet #nas #object_detection #onnx #pytorch #tensorrt #yolo #yolov5
https://github.com/tinyvision/DAMO-YOLO
https://github.com/tinyvision/DAMO-YOLO
GitHub
GitHub - tinyvision/DAMO-YOLO: DAMO-YOLO: a fast and accurate object detection method with some new techs, including NAS backbones…
DAMO-YOLO: a fast and accurate object detection method with some new techs, including NAS backbones, efficient RepGFPN, ZeroHead, AlignedOTA, and distillation enhancement. - tinyvision/DAMO-YOLO
#jupyter_notebook #computer_vision #deep_learning #image_classification #imagenet #neural_network #object_detection #pretrained_models #pretrained_weights #pytorch #semantic_segmentation #transfer_learning
https://github.com/Deci-AI/super-gradients
https://github.com/Deci-AI/super-gradients
GitHub
GitHub - Deci-AI/super-gradients: Easily train or fine-tune SOTA computer vision models with one open source training library.…
Easily train or fine-tune SOTA computer vision models with one open source training library. The home of Yolo-NAS. - Deci-AI/super-gradients
#python #deeplab_v3_plus #deeplabv3 #fpn #hacktoberfest #image_processing #image_segmentation #imagenet #linknet #models #pretrained_backbones #pretrained_models #pretrained_weights #pspnet #pytorch #segmentation #segmentation_models #semantic_segmentation #unet #unet_pytorch #unetplusplus
https://github.com/qubvel/segmentation_models.pytorch
https://github.com/qubvel/segmentation_models.pytorch
GitHub
GitHub - qubvel-org/segmentation_models.pytorch: Semantic segmentation models with 500+ pretrained convolutional and transformer…
Semantic segmentation models with 500+ pretrained convolutional and transformer-based backbones. - qubvel-org/segmentation_models.pytorch
#python #augmix #convnext #distributed_training #dual_path_networks #efficientnet #image_classification #imagenet #maxvit #mixnet #mobile_deep_learning #mobilenet_v2 #mobilenetv3 #nfnets #normalization_free_training #pretrained_models #pretrained_weights #pytorch #randaugment #resnet #vision_transformer_models
PyTorch Image Models (`timm`) is a comprehensive library that includes a wide range of state-of-the-art image models, layers, utilities, optimizers, and training scripts. Here are the key benefits `timm` offers over 300 pre-trained models from various families like Vision Transformers, ResNets, EfficientNets, and more, allowing you to choose the best model for your task.
- **Pre-trained Weights** You can easily extract features at different levels of the network using `features_only=True` and `out_indices`, making it versatile for various applications.
- **Optimizers and Schedulers** It provides several augmentation techniques like AutoAugment, RandAugment, and regularization methods like DropPath and DropBlock to enhance model performance.
- **Reference Training Scripts**: Included are high-performance training, validation, and inference scripts that support multiple GPUs and mixed-precision training.
Overall, `timm` simplifies the process of working with deep learning models for image tasks by providing a unified interface and extensive tools for training and evaluation.
https://github.com/huggingface/pytorch-image-models
PyTorch Image Models (`timm`) is a comprehensive library that includes a wide range of state-of-the-art image models, layers, utilities, optimizers, and training scripts. Here are the key benefits `timm` offers over 300 pre-trained models from various families like Vision Transformers, ResNets, EfficientNets, and more, allowing you to choose the best model for your task.
- **Pre-trained Weights** You can easily extract features at different levels of the network using `features_only=True` and `out_indices`, making it versatile for various applications.
- **Optimizers and Schedulers** It provides several augmentation techniques like AutoAugment, RandAugment, and regularization methods like DropPath and DropBlock to enhance model performance.
- **Reference Training Scripts**: Included are high-performance training, validation, and inference scripts that support multiple GPUs and mixed-precision training.
Overall, `timm` simplifies the process of working with deep learning models for image tasks by providing a unified interface and extensive tools for training and evaluation.
https://github.com/huggingface/pytorch-image-models
GitHub
GitHub - huggingface/pytorch-image-models: The largest collection of PyTorch image encoders / backbones. Including train, eval…
The largest collection of PyTorch image encoders / backbones. Including train, eval, inference, export scripts, and pretrained weights -- ResNet, ResNeXT, EfficientNet, NFNet, Vision Transformer (V...
#python #ade20k #image_classification #imagenet #mask_rcnn #mscoco #object_detection #semantic_segmentation #swin_transformer
The Swin Transformer is a powerful tool for computer vision tasks like image classification, object detection, semantic segmentation, and video recognition. It uses a hierarchical structure with shifted windows to efficiently process images, making it more efficient than other models. Here are the key benefits Swin Transformer achieves state-of-the-art results in various tasks such as COCO object detection, ADE20K semantic segmentation, and ImageNet classification.
- **Efficiency** The model supports multiple tasks including image classification, object detection, instance segmentation, semantic segmentation, and video action recognition.
- **Improved Speed** The model is integrated into popular frameworks like Hugging Face Spaces and PaddleClas, making it easy to use and deploy.
Overall, the Swin Transformer offers high accuracy, efficiency, and versatility, making it a valuable tool for various computer vision applications.
https://github.com/microsoft/Swin-Transformer
The Swin Transformer is a powerful tool for computer vision tasks like image classification, object detection, semantic segmentation, and video recognition. It uses a hierarchical structure with shifted windows to efficiently process images, making it more efficient than other models. Here are the key benefits Swin Transformer achieves state-of-the-art results in various tasks such as COCO object detection, ADE20K semantic segmentation, and ImageNet classification.
- **Efficiency** The model supports multiple tasks including image classification, object detection, instance segmentation, semantic segmentation, and video action recognition.
- **Improved Speed** The model is integrated into popular frameworks like Hugging Face Spaces and PaddleClas, making it easy to use and deploy.
Overall, the Swin Transformer offers high accuracy, efficiency, and versatility, making it a valuable tool for various computer vision applications.
https://github.com/microsoft/Swin-Transformer
GitHub
GitHub - microsoft/Swin-Transformer: This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer…
This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows". - microsoft/Swin-Transformer
#python #annotation #annotation_tool #annotations #boundingbox #computer_vision #computer_vision_annotation #dataset #deep_learning #image_annotation #image_classification #image_labeling #image_labelling_tool #imagenet #labeling #labeling_tool #object_detection #pytorch #semantic_segmentation #tensorflow #video_annotation
CVAT is a powerful tool for annotating videos and images, especially useful for computer vision projects. It helps developers and companies annotate data quickly and efficiently. You can use CVAT online for free or subscribe for more features like unlimited data and integrations with other tools. It also offers a self-hosted option with enterprise support. CVAT supports many annotation formats and has automatic labeling options to speed up your work. It's widely used by many teams worldwide, making it a reliable choice for your data annotation needs.
https://github.com/cvat-ai/cvat
CVAT is a powerful tool for annotating videos and images, especially useful for computer vision projects. It helps developers and companies annotate data quickly and efficiently. You can use CVAT online for free or subscribe for more features like unlimited data and integrations with other tools. It also offers a self-hosted option with enterprise support. CVAT supports many annotation formats and has automatic labeling options to speed up your work. It's widely used by many teams worldwide, making it a reliable choice for your data annotation needs.
https://github.com/cvat-ai/cvat
GitHub
GitHub - cvat-ai/cvat: Annotate better with CVAT, the industry-leading data engine for machine learning. Used and trusted by teams…
Annotate better with CVAT, the industry-leading data engine for machine learning. Used and trusted by teams at any scale, for data of any scale. - cvat-ai/cvat