Анализ данных (Data analysis)
46.9K subscribers
2.53K photos
292 videos
1 file
2.21K links
Data science, наука о данных.

@haarrp - админ

@itchannels_telegram - 🔥 главное в ит

@ai_machinelearning_big_data - ML

@machinelearning_interview - вопросы с собесдований по Ml

РКН: clck.ru/3FmyAp
Download Telegram
Forwarded from Machinelearning
📌Скорость решает все: обзор эффективных архитектур для LLM.

Ландшафт архитектур LLM превратился в настоящий зоопарк. Почти каждую неделю появляются новые методы, обещающие меньший расход памяти и более быстрый инференс. Разобраться в этом становится все сложнее.

Большая группа исследователей выпустила подробный обзор Speed Always Wins, чтобы систематизировать все ключевые инновации в области эффективных архитектур для LLM.

Это не просто очередная статья, а попытка упорядочить и структурировать актуальные подходы, которые решают главную проблему классического трансформера - его квадратичную вычислительную сложность.

Обзор описывает 7 основных направлений.

🟡Линейное моделирование последовательностей.

Здесь авторы разбирают все подходы, которые так или иначе сводят сложность самовнимания к линейной. В эту категорию попадают 3 большие ветви: линейное внимание; линейные RNN, вроде и, конечно, модели на основе пространства состояний (SSM).

🟡Второе и третье направления посвящены идее разреженности.

Разреженное моделирование последовательностей основано на простом принципе: не каждый токен должен общаться с каждым. Здесь выделяются статические подходы (как в Longformer), где паттерны внимания заданы заранее, и динамические, где они определяются на лету в зависимости от контента.

🟡MoE.

Методика, которая уже стала мейнстримом. В МоЕ разреженность применяется не в механизме внимания, а в FFN-слоях, где для каждого токена активируется лишь небольшая часть экспертов, что позволяет наращивать число параметров без пропорционального роста вычислений.

🟡Четвёртый раздел - эффективное полное внимание.

В нем речь идет не об изменении асимптотической сложности, а об ее аппаратной оптимизации. Флагман - FlashAttention.

Есть детальный разбор, как за счет оптимизации обращений к памяти GPU удается кардинально ускорить вычисления, не прибегая к аппроксимациям. Сюда же относятся и групповые механизмы внимания: GQA и MQA.

🟡Гибридные архитектуры.

Это, пожалуй, самый горячий тренд. Его идея в том, чтобы стратегически комбинировать быстрые слои с линейной сложностью и медленные, но мощные слои с полным вниманием.

В обзоре выделяют два типа гибридизации: межслойную, как в Jamba, где разные типы слоев чередуются, и внутрислойную, где в одном слое разные головы могут использовать разные механизмы внимания.

 🟡Диффузионные LLM (DLLM) 
 
 Это неавторегрессионные модели, которые генерируют текст, постепенно восстанавливая его из шума. Их главная фишка в параллельном декодировании, что дает ощутимое ускорение инференса.
 
 В конце обзора есть анализ применения всех этих архитектур в разных модальностях - CV и аудио.


Так что, если хотите быстро разобраться в базовых методах, которые будут двигать дизайн LLM в ближайшее время, а двигаться он будет в сторону микширования алгоритмов, систем и железа, этот обзор - мастрид.


🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #Architectures
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
14👍6🔥6
KOSMOS 2.5 от Microsoft наконец-то интегрирован в huggingface Transformers 🙌🔥

Это end-to-end Document AI модель, похожая на Donut/Pix2Struct, обученная на 357,4 млн документов.

Основные возможности:
- Конвертация изображений в Markdown
- OCR с пространственными координатами
- Общение напрямую с документами

Огромный шаг для Document AI и мультимодальных рабочих процессов!

🟢Models : https://huggingface.co/models?search=microsoft/kosmos-2.5
🟢Docs: https://huggingface.co/docs/transformers/main/en/model_doc/kosmos2_5

#AI #HuggingFace #Microsoft #DocumentAI
Please open Telegram to view this post
VIEW IN TELEGRAM
👍115🔥5
Forwarded from Machinelearning
⚡️ OLMoASR: открытые ASR-модели от AI2.

Институт искусственного интеллекта Аллена выпустил OLMoASR, семейство из 6 моделей для автоматического распознавания английской речи.

▶️Линейка моделей:

🟢OLMoASR-tiny.en (39M);
🟢OLMoASR-base.en (74M);
🟢OLMoASR-small.en (244M);
🟢OLMoASR-medium.en (769M);
🟠OLMoASR-large.en-v1 (1.5B) обученная на 440 тыс. часов аудио;
🟠OLMoASR-large.en-v2 (1.5B) обученная на 680 тыс. часов аудио;

По результатам тестов на 21 датасете, модели OLMoASR показали производительность, сопоставимую с Whisper от OpenAI, а в некоторых случаях и превзошли ее, особенно при работе с длинными аудиозаписями.

Проект полностью открытый: опубликованы не только веса моделей, но и датасет, код для обработки данных, а также скрипты для обучения и оценки. Все компоненты, включая код и данные, доступны на GitHub и Hugging Face.


📌Лицензирование:  Apache 2.0 License.


🟡Статья
🟡Набор моделей
🟡Техотчет
🟡Demo
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #ASR #OLMoASR #AI2
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
10👍5🔥5
🧠 Новый шаг к мозгу на чипе

Учёные из Stanford, Sandia National Labs и Purdue создали искусственные нейроны, которые могут передавать и электрические, и световые сигналы одновременно — так же, как это делают настоящие клетки мозга.

В мозге нейроны общаются короткими электрическими импульсами. Большинство нейроморфных чипов копируют только это.
💡 Но на дальние расстояния куда эффективнее работает свет.

🔬 Новые электро-оптические нейроны из диоксида ниобия решают этот разрыв:
— каждый импульс несёт электрический сигнал для локальной обработки
— и синхронный световой импульс, который может передаваться дальше

Это значит, что один искусственный нейрон теперь может и вычислять, и коммуницировать одновременно.

💡 Перспектива: интеграция электрических и оптических функций в одной системе без дорогого оборудования и конвертации сигналов.

Источник: techxplore.com/news/2025-08-scientists-private-ai.html

#AI #Neuroscience #Innovation #Neuromorphic
🔥145👍4
🧩 ArcMemo — память для LLM, которая учит модель сохранять и переиспользовать концепты при решении задач.

📈 Результат: +7.5% относительно базовой модели на бенчмарке ARC-AGI.

Проблема:
Обычно длинные цепочки рассуждений исчезают после каждого запроса, и модель «забывает» полезные паттерны.

💡 Решение — ArcMemo:
- Сохраняет абстрактные модули в виде концептов на естественном языке или в виде параметрических мини-функций.
- Концепты бывают двух типов:
- Открытые: описание ситуации + подсказка.
- Программные: псевдокод и функции с параметрами.
- После решения задача конспектируется в набор таких концептов.
- При новой задаче модель подбирает релевантные концепты и комбинирует их для решения.
- С обратной связью на тестах память обновляется и расширяется.

📌 Вывод: память в виде модульных концептов повышает переносимость и делает решения более стабильными.

🔗 Paper: arxiv.org/abs/2509.04439

#AI #LLM #ARCAGI #Reasoning #Memory
13🔥4👍2
📊 Неожиданная статистика по ИИ-ассистентам

Сообщают, что Microsoft Copilot значительно опережает Gemini по числу пользователей. На первый взгляд это выглядит странно.

Возможное объяснение: речь идёт не о реальном использовании, а о количестве активированных аккаунтов и доступе по умолчанию (Copilot встроен в Windows и Office).

Ещё более удивительно, что Claude якобы сильно отстаёт — и это тоже вызывает вопросы, ведь его активно используют в сообществе.

⚡️ Мораль: статистику по ИИ стоит читать внимательно — важно, что именно считают: доступ, активации или реальное использование.

https://gs.statcounter.com/ai-chatbot-market-share#monthly-202508-202508-bar

#ai #copilot #gemini #claude
😁97👍3🔥2
⚡️ DeepCode — открытая AI-платформу для автоматической генерации кода.

DeepCode превращает научные статьи и технические документы в готовые проекты, включая фронтенд, бэкенд и полноценные репозитории.

🔹 Основные возможности:
• Paper2Code — реализация идей из исследований в рабочий код
• Text2Web — генерация интерфейсов по описанию
• Text2Backend — автоматическое создание масштабируемых серверов
• Поддержка длинных документов и многофайловых проектов

🔜 В ближайшее время разработчики обещают:
• Автоматическую проверку и валидацию кода
• Повышение скорости генерации
• Улучшенную работу с требованиями
• Бенчмарки воспроизведения научных статей (PaperBench)

Проект полностью open source: https://github.com/HKUDS/DeepCode

#deepcode #AI #coding
Please open Telegram to view this post
VIEW IN TELEGRAM
13👍7🔥4🤨1
📖 Новая работа ByteDance + Harvard: *Mycroft: Tracing Dependencies in Collective Communication Towards Reliable LLM Training*

Mycroft - система, которая помогает понять, почему обучение LLM на кластере GPU тормозит или падает.

🚧 Проблема
При распределённом обучении сотни GPU постоянно обмениваются данными через библиотеку NCCL. Она работает как «чёрный ящик»: при сбое видно только таймауты или падение скорости, но непонятно, где именно сбой.

🛠 Решение — Mycroft
- «Подглядывает» внутрь процесса обмена данными
- Каждые 100 мс пишет лёгкие статусы: сколько данных подготовлено, отправлено и завершено
- Если прогресс застопорился → сразу сигнал
- Отслеживает зависимости между GPU и определяет: проблема в конкретной карте, сетевой карте или шине

Результаты
- В тестах на 32 GPU и в проде у ByteDance
- Находит сбой за ~**15 секунд**
- Указывает точный компонент за <**20 секунд**
- Нагрузка на обучение почти нулевая

🔗 https://arxiv.org/abs/2509.03018

#AI #LLM #GPU #DistributedTraining #ByteDance #Harvard
6🔥6👍4
💰Perplexity привлекла $200M при оценке в $20B.

Это произошло всего через два месяца после предыдущего раунда в $100M при оценке $18B. Общий объём инвестиций приближается к $1.5B.

📊 Выручка (ARR) уже почти $200M (месяц назад была $150M).
💡 Оценка в $20B при $200M ARR даёт мультипликатор ~100x - это возможно только при очень быстром росте и низком уровне оттока пользователей.

Perplexity выделяется тем, что отвечает на запросы с источниками и краткими сводками, заменяя «охоту за ссылками» на результат, сгенерированный моделью.
Но такой дизайн требует больших вычислительных мощностей: каждый запрос запускает веб-поиск, инференс LLM и генерацию ответа в реальном времени.

Источник: https://techcrunch.com/2025/09/10/perplexity-reportedly-raised-200m-at-20b-valuation/

#AI #Perplexity #Funding #Startups #LLM #Investments
👍10🔥86
🚀 Release: TimesFM 2.5

Google Research представила обновлённую версию TimesFM 2.5 на Hugging Face (скоро также в BigQuery и **Model Garden**).

TimesFM (Time Series Foundation Model) - модель от Google для прогнозирования временных рядов.

Что нового:
- Существенное повышение точности по сравнению с TimesFM 2.0
- Увеличенная максимальная длина контекста
- Лидерство на GiFT-Eval — TimesFM 2.5 занимает первое место по всем accuracy-метрикам среди zero-shot foundation-моделей

🟠Репозиторий: https://github.com/google-research/timesfm)
🟠HF: http://huggingface.co/google/timesfm-2.5-200m-pytorch

@data_analysis_ml

#AI #ML #TimesFM #forecasting #GoogleResearch
Please open Telegram to view this post
VIEW IN TELEGRAM
11🔥6👍4
🚀 Xai представили новый Grok-4 fast — дешёвый, быстрый и с контекстом в 2 млн токенов 🔥

🧠 Архитектура объединяет режимы рассуждений и обычной генерации в одной модели.

Это означает, что можно обрабатывать простые запросы, не тратя лишние вычислительные ресурсы.

💲 Цены радуют:
- Ввод: $0.20 / 1M токенов (fast) и $0.40 / 1M (full)
- Вывод: $0.50 / 1M токенов (fast) и $1.00 / 1M (full)

Дешево, быстро и с огромным контекстом.

https://x.com/xai/status/1969183326389858448

#ai #grok
14👍2🔥2
🚀 Новое исследование Hunyuan: Reinforcement Learning on Pre-training Data (RLPT)

Этот метод решает главную проблему масштабирования LLM - ограниченность размеченного текста.

🌟 RLPT даёт моделям возможность учиться рассуждениям напрямую на данных предобучения, без дорогой ручной разметки.

Как это работает:
1️⃣ Модель во время обучения сама исследует данные и учится более общим стратегиям рассуждений.
2️⃣ Никакой дополнительной разметки — награды извлекаются прямо из предобучающих данных.
3️⃣ Награды за предсказание следующего сегмента позволяют масштабировать RL на этапе предобучения.

Результаты:
На Qwen3-4B-Base прирост: +3.0 (MMLU), +5.1 (MMLU-Pro), +8.1 (GPQA-Diamond), +6.0 (KOR-Bench), +6.6 (AIME24), +5.3 (AIME25).
Чем больше вычислений, тем сильнее рост.
Технология создаёт базу для дальнейших улучшений в RLVR.

📄 Подробнее: https://arxiv.org/pdf/2509.19249

#AI #RLPT #LLM #MachineLearning #NLP

@data_analysis_ml
13👍5🔥3
This media is not supported in your browser
VIEW IN TELEGRAM
🆕 Hugging Face представили **AI Sheets** — no-code инструмент для создания и обработки таблиц с помощью ИИ.

- Выглядит как обычная таблица, но вместо формул — тысячи моделей
- Поддержка OpenAI-совместимых и локальных LLM
- Можно добавлять столбцы с промптами, редактировать данные вручную или через лайки
- Запуск онлайн или локально (Docker / pnpm)
- Полностью опенсорс (Apache-2.0), легко встроить в пайплайны
- Подходит для классификации, трансформации данных, синтетики и «vibe-тестов» моделей

⚡️ Попробовать

#AI #NoCode #datasets #HuggingFace #LLM
Please open Telegram to view this post
VIEW IN TELEGRAM
14🔥4👍2👏2
🔥 Новая SOTA среди моделей на 1.5B параметров

QuestA 🤖 показывает двузначный прирост Pass@1 и даже обгоняет ранние 32B-модели:
- AIME24: 72.50% (+10.73%)
- AIME25: 62.29% (+12.79%)
- HMMT25: 41.67% (+10.11%)

🚀 Секрет в обучении: QuestA использует RL с scaffolded-problems — это снимает конфликт между лёгкими и сложными задачами и даёт более масштабируемое рассуждение.

🔓 Всё в открытом доступе:
- Модель: https://huggingface.co/foreverlasting1202/QuestA-Nemotron-1.5B
- Тренировочный пайплайн: https://github.com/foreverlasting1202/QuestA
- Статья: https://arxiv.org/abs/2507.13266
- Блог: https://mercurial-kidney-02d.notion.site/QuestA-Expanding-Reasoning-Capacity-in-LLMs-via-Question-Augmentation-216b21d08abb81a1bcecfe79e7d1e88a?pvs=73

#LLM #Reasoning #AI #SOTA

@data_analysis_ml
6👍3🔥2
Forwarded from Machinelearning
✔️ Прорыв в квантовых вычислениях

Физики Гарварда создали первый в мире квантовый компьютер, который работает непрерывно без перезапуска.

Ранее квантовые машины держались миллисекунды, максимум - около 13 секунд.
Новая установка работает более 2 часов и может функционировать бесконечно.

Ключевое новшество - решение проблемы потери атомов: система в реальном времени пополняет кубиты, впрыскивая 300 000 атомов в секунду с помощью оптических инструментов.

Учёные считают, что практические, постоянно работающие квантовые компьютеры могут появиться уже в течение 2 лет - с огромным влиянием на медицину, финансы и научные исследования.
thecrimson

✔️ Anthropic делает ставку на AI-приложения для бизнеса

По данным The Information, Anthropic продвигает свою модель Claude как основу для создания enterprise-замен привычных приложений вроде Slack. Компания делает ставку на обучение с подкреплением, чтобы улучшить способности модели к программированию.

Похожую стратегию развивает и xAI Илона Маска, но эксперты сомневаются, что крупные корпорации откажутся от укоренившихся систем вроде SAP или ServiceNow. Более вероятно, что первыми такие AI-first инструменты начнут использовать небольшие стартапы.

Тем временем JPMorgan и другие банки активно заявляют об интеграции решений OpenAI, Anthropic и Google, хотя реальные масштабы затрат пока не соответствуют публичному энтузиазму.
theinformation

✔️ Perplexity объявила, что её AI-браузер Comet, ранее доступный только по подписке $200/месяц, теперь стал бесплатным для всех (с ограничениями по запросам).

Comet, запущенный в июле 2025 года, работает как встроенный ассистент: он умеет анализировать страницы, вытаскивать ключевые детали и сердить по ссылкам, проводя многошаговые исследования.

Perplexity также представила Comet Plus за $5 — партнёрскую подписку, которая открывает доступ к контенту от CNN, The Washington Post, Fortune, Los Angeles Times и Condé Nast (The New Yorker, Wired и др.).

Однако запуск совпал с продолжающимися исками от крупных издателей, включая Dow Jones (The Wall Street Journal) и New York Post, обвиняющих стартап в использовании их материалов для обучения ИИ.
Скачать Comet

✔️ OpenAI раскалывает запуск Sora: ИИ-видео как TikTok, но сотрудники бьют тревогу

TechCrunch пишет, что запуск нового соцприложения Sora 2 вызвал тревогу внутри самой OpenAI. Это TikTok-подобная лента, наполненная видео, созданными ИИ, включая дипфейки самого Сэма Альтмана.

Часть исследователей OpenAI считает, что компания уходит от своей миссии ради хайпового контента. Один из сотрудников прямо заявил: «AI-ленты - пугающие. Я был шокирован, узнав, что мы выпускаем Sora 2…»

Сторонники проекта объясняют, что такие продукты нужны, чтобы финансировать фундаментальные исследования и дать пользователям почувствовать силу технологий. В OpenAI утверждают, что хотят «показать людям что-то классное, чтобы они улыбнулись».

Но вместе с ростом Sora OpenAI рискует повторить судьбу классических соцсетей: зависимость, манипуляции c информацией, проблемы с дипфейками и давлением на метрики вовлечённости.
techcrunch

✔️ США продолжают контролировать большинство мировых мощностей для обучения ИИ, строя самые большие и энергоемкие кластеры

Китай в 2025 году вложит до 98 млрд долларов, но экспортные ограничения на топовые чипы Nvidia и AMD тормозят прогресс.

Huawei продвигает Ascend 910C, однако по памяти, пропускной способности и софту он уступает решениям Nvidia. США разрешили ограниченные продажи H20 и MI308 в Китай с 15% налогом, но топовые GPU недоступны китацы, и разрыв в производительности всё ещё в пользу американцев.
X

@ai_machinelearning_big_data


#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
4👍3🔥2🥰2🤣1
This media is not supported in your browser
VIEW IN TELEGRAM
💡 Модель Ming-UniAudio — это универсальный фреймворк, сочетающий понимание речи, генерацию и редактирование.

- Модель Ming-UniAudio — это универсальный фреймворк, сочетающий *понимание речи*, *генерацию* и *редактирование*.
- В её основе лежит единый непрерывный токенизатор речи, интегрирующий семантические и акустические признаки.
- Поддерживается инструкционное редактирование: можно менять звук, содержание или тональность без указания временных фрагментов.
- В бенчмарках показывает конкурентные результаты и для распознавания, и для генерации речи.
- Лицензия: Apache-2.0.

💻 GitHub: https://github.com/inclusionAI/Ming-UniAudio
🤗 Tokenizer: https://huggingface.co/inclusionAI/MingTok-Audio
🤗 Model:
base: https://huggingface.co/inclusionAI/Ming-UniAudio-16B-A3B
edit: https://huggingface.co/inclusionAI/Ming-UniAudio-16B-A3B-Edit
🤗 Benchmark: https://huggingface.co/datasets/inclusionAI/Ming-Freeform-Audio-Edit-Benchmark
🌍 blog: https://xqacmer.github.io/Ming-Unitok-Audio.github.io/
#AI #Speech #SpeechLLM #LLM #GenerativeAI #Audio #ASR #TTS #SpeechEditing
8🔥3👍2
🧠 DataMind - открытая система для умных дата-агентов

DataMind - это новая архитектура для создания универсальных агентов анализа данных, которые уже превосходят GPT-5 и DeepSeek-V3.1 по качеству рассуждений и работе с кодом.

🧩 Зачем создан DataMind
Сегодня большинство дата-агентов используют закрытые модели и зависят от промпт-инжиниринга.
Открытые решения не умеют устойчиво рассуждать по шагам и работать с разными форматами данных.
Команда DataMind решила эти три главные проблемы:
1. Недостаток качественных данных для обучения
2. Неправильные стратегии обучения
3. Ошибки при многошаговом исполнении кода

🔧 Как устроен DataMind
Система включает полный цикл - от генерации данных до обучения и выполнения задач.
Она использует:
- классификацию задач и создание запросов от простых к сложным
- фильтрацию траекторий через self-consistency (самопроверку ответов)
- комбинацию динамического обучения SFT и RL, что делает процесс стабильным
- оптимизированное выполнение кода в изолированной среде

📊 Результаты
- Модель DataMind-14B показала 71.16 % среднего результата и превзошла GPT-5 и DeepSeek-V3.1
- Лёгкая версия DataMind-7B стала лучшей среди open-source решений — 68.10 %, обучена на 12 000 траекторий

💡 Главные выводы
- Фильтрация через self-consistency эффективнее, чем выбор одной «лучшей» траектории
- Потери SFT стабилизируют обучение, но при ошибочной настройке вызывают колебания
- RL сокращает разрыв между моделями, но не меняет общий рейтинг

Команда открыла датасет DataMind-12K и модели DataMind-7B и 14B, чтобы сообщество могло строить своих аналитических агентов.

📄 Исследование: https://arxiv.org/abs/2509.25084
💻 Код: https://github.com/zjunlp/DataMind
📊 Модели и данные: https://huggingface.co/collections/zjunlp/datamind-687d90047c58bb1e3d901dd8)

#AI #DataScience #LLM #Agents #OpenSource #DataAnalysis #ReinforcementLearning #NLP
12🔥8👍3
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
✔️GPT-5 Pro стал лидером ARC-AGI Semi-Private Benchmark

Модель GPT-5 Pro заняла первое место среди всех проверенных frontier-LLM на закрытом бенчмарке ARC-AGI Semi-Private. Этот тест оценивает способность моделей к абстрактному рассуждению и решению сложных задач.

Интересно, что GPT-5 Pro всё ещё уступает результатам старого o3-preview, который OpenAI тестировал ещё в декабре прошлого года. Однако тот экспериментальный вариант был почти в 50 раз дороже в вычислительных затратах и никогда не был публично выпущен.

Версия o3-preview (high) достигала впечатляющих 87,5 % точности на ARC-AGI-1, но потребляла 172 раза ресурсов, чем версия (low). Из-за этого она не попала в официальный лидерборд - по правилам, тесты с compute-стоимостью выше $10 000 не публикуются.

GPT-5 Pro является самой мощной из доступных и подтверждённых моделей на Semi-Private ARC-AGI.

✔️Журнал TIME опубликовал ежегодный список The Best Inventions of 2025 - подборку из 300 инновационных продуктов и идей, которые, по мнению редакции, способны изменить будущее.

В список вошли достижения в самых разных областях: ИИ робототехника, медицина, экология, образование, энергетика и дизайн. Среди ключевых технологий - Claude Sonnet 4 от Anthropic, новая версия ИИ-модели, которая продемонстрировала более точные и безопасные ответы; NVIDIA DGX Spark - «настольный» AI-суперкомпьютер, делающий высокопроизводительные вычисления доступнее; UiPath Agentic Automation, объединяющая работу AI-агентов; и XReal One - компактные AR-очки, приближающие смешанную реальность к массовому использованию.

TIME отметили разработки в области биотехнологий, биопечати тканей, устойчивых источников энергии и переработки отходов. Эти изобретения демонстрируют, как технологии становятся не просто инструментами, а основой будущего образа жизни.
time

✔️ Google Cloud показал 1001 реальный кейс использования генеративного ИИ в бизнесе

Google Cloud опубликовал обновлённый список из 321 корпоративного примера применения генеративного ИИ, что в 10 раз больше, чем годом ранее. Это показывает, что AI уже массово используется в продакшене по всему миру.

В банках и ритейле Commerzbank ИИ обрабатывает 2 млн клиентских чатов с 70% успешных решений, Best Buy ускоряет анализ отзывов, а Mercedes внедрил голосового ассистента на базе Gemini.

Внутри компаний ИИ автоматизирует рутину: Toyota экономит более 10 000 часов в год, Manipal Hospitals сократил передачу смен с 90 до 20 минут, Equifax - 97% сотрудников хотят сохранить AI-лицензии.

Wayfair ускорил настройку окружений на 55%, CME сэкономил 10,5 часов в месяц, а BMW и UPS используют цифровых двойников для моделирования логистики и производств.
Подробнее

✔️ Taiwan отказывается от идеи 50 на 50 с США по производству чипов

Министр экономики Тайваня заявил, что TSMC сохранит свои самые передовые технологии и основное производство на острове, несмотря на предложение США сделать «50 на 50».

Компания вкладывает $165 млрд в шесть фабрик в США, но строит десять на Тайване и планирует новые - там останутся ведущие технологические узлы.

По словам министра, зарубежные заводы допустимы только при реальных заказах, прибыли и отсутствии рисков для безопасности.

Идея «50-50» возникла из-за стремления США увеличить долю внутренних чипов после кризиса поставок 2020–2021 годов.

Аналитики считают, что перенос производства в США слишком дорог и займёт годы, поэтому Вашингтон делает ставку на «friendshoring» - распределённые цепочки поставок между союзниками.
times

✔️ UserLM-8B от Microsoft

Microsoft представила новую модель UserLM-8B, созданную для симуляции поведения пользователя в диалоге. В отличие от обычных LLM, эта модель генерирует реплики от лица человека, включая уточнения, эмоции и ошибки, как в реальном общении.

Модель построена на базе Llama3.1 8B и дообучена на корпусе WildChat-1M, где она анализировала сотни тысяч реальных и синтетических диалогов. Такой подход позволяет создавать реалистичные сценарии общения для тестирования чат-ботов, обучения ассистентов и генерации синтетических данных.
HF

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥43👍3
Forwarded from Machinelearning
⚡️ Mamba-3 тихо и без объявления вышла на ICLR - и это может стать началом конца эпохи Transformers.

Новая архитектура Mamba-3 делает модели быстрее, стабильнее и эффективнее при работе с длинными контекстами.

Главная идея - не в слоях внимания, а в state-space моделях, где модель хранит и обновляет внутреннее состояние во времени.

📘 Краткие эускурс:
- Mamba-1 ввела непрерывную динамику и выборочное обновление памяти - помнила эффективно без высокой цены attention.
- Mamba-2 показала, что обновления состояния и attention - это две стороны одной математики, что ускорило вычисления на GPU.
- Mamba-3 довела концепцию до зрелости: теперь внутренняя память развивается плавнее и устойчивее за счёт перехода от простого шага Эйлера к трапецеидальному интегрированию.

Вместо простого шага Эйлера, как в Mamba-2, Mamba-3 аппроксимирует интеграл обновления состояния не только по правому концу интервала, но усреднением между началом и концом, с коэффициентом λ, зависящим от данных. Это даёт более точное приближение (второго порядка) и делает динамику состояния более выразительной.

🧠 Что изменилось под капотом:

- Память стала «ритмичной»: теперь модель может хранить повторяющиеся и периодические паттерны (например, структуры языка или музыки).

- Новый multi-input-multi-output дизайн позволяет обрабатывать несколько потоков параллельно — идеально для современных GPU.

⚙️ Что это даёт на практике:
- Эффективная работа с длинными последовательностями: документы, геномы, временные ряды.

- Линейное время выполнения и стабильная задержка делают её идеальной для реального времени: чат-ботов, перевода, речи.

- Энергоэффективность и масштабируемость открывают путь к on-device AI, где большие модели работают локально, без облака.

Mamba-3 - это не просто ускоренная альтернатива Transformers.

Это новая архитектура, которая объединяет глубокое понимание контекста, скорость и устойчивость, от серверных систем до умных устройств.

🟢 Подробности: https://openreview.net/pdf?id=HwCvaJOiCj

@ai_machinelearning_big_data


#ssm #mamba3 #llm,#architecture #ai
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
14👍7
⚡️ Samsung идёт на риск, чтобы вернуть лидерство в гонке AI-памяти - ставка на сверхбыструю HBM4

Samsung решила изменить правила игры на рынке чипов и убедить Nvidia повысить официальную скорость HBM4, даже несмотря на то, что конкуренты: SK Hynix и Micron - раньше показали первые образцы.

Обычно разработчики HBM (High Bandwidth Memory) делают акцент на контроле температуры, ведь многослойная DRAM быстро нагревается. Но теперь Nvidia потребовала большего - выше частоты, выше скорость.

Для Hynix и Micron это стало неожиданностью: их решения оптимизированы под стабильность, а не под разгон.

А вот Samsung оказалась готова. Её HBM4-чипы уже достигли более высоких частот на тестах - благодаря технологическому преимуществу:
- DRAM-чипы производятся по 1c-процессу (6-е поколение 10 нм),
- базовый логический кристалл - на 4-нм техпроцессе Samsung Foundry.
Для сравнения:
- SK Hynix использует 12-нм процесс TSMC,
- Micron - старый DRAM-процесс.

Более продвинутая литография даёт Samsung лучший контроль над энергопотреблением и сигналами.

Компания уже ускоряет производство и планирует вывести HBM4 на рынок в 2026 году, когда спрос на память для AI-систем резко превысит предложение.
Такой шаг может вернуть Samsung утраченные позиции после неудачи с HBM3E.

Ключевой момент - тесты Nvidia Rubin. Если HBM4 покажет проблемы с нагревом или надёжностью при интеграции, вся стратегия может рухнуть.
Но если всё пройдёт успешно, Samsung сможет опередить Hynix и Micron, снова захватив лидерство в памяти для AI-ускорителей.

Итог: Samsung делает ставку на скорость, технологии и масштаб. Это рискованный, но стратегический шаг, который может определить баланс сил на рынке AI-чипов в ближайшие годы.

🟠Подробности

#Samsung #Nvidia #AI
Please open Telegram to view this post
VIEW IN TELEGRAM
6👍4🔥3