Forwarded from Machinelearning
Ландшафт архитектур LLM превратился в настоящий зоопарк. Почти каждую неделю появляются новые методы, обещающие меньший расход памяти и более быстрый инференс. Разобраться в этом становится все сложнее.
Большая группа исследователей выпустила подробный обзор Speed Always Wins, чтобы систематизировать все ключевые инновации в области эффективных архитектур для LLM.
Это не просто очередная статья, а попытка упорядочить и структурировать актуальные подходы, которые решают главную проблему классического трансформера - его квадратичную вычислительную сложность.
Обзор описывает 7 основных направлений.
Здесь авторы разбирают все подходы, которые так или иначе сводят сложность самовнимания к линейной. В эту категорию попадают 3 большие ветви: линейное внимание; линейные RNN, вроде и, конечно, модели на основе пространства состояний (SSM).
Разреженное моделирование последовательностей основано на простом принципе: не каждый токен должен общаться с каждым. Здесь выделяются статические подходы (как в Longformer), где паттерны внимания заданы заранее, и динамические, где они определяются на лету в зависимости от контента.
Методика, которая уже стала мейнстримом. В МоЕ разреженность применяется не в механизме внимания, а в FFN-слоях, где для каждого токена активируется лишь небольшая часть экспертов, что позволяет наращивать число параметров без пропорционального роста вычислений.
В нем речь идет не об изменении асимптотической сложности, а об ее аппаратной оптимизации. Флагман - FlashAttention.
Есть детальный разбор, как за счет оптимизации обращений к памяти GPU удается кардинально ускорить вычисления, не прибегая к аппроксимациям. Сюда же относятся и групповые механизмы внимания: GQA и MQA.
Это, пожалуй, самый горячий тренд. Его идея в том, чтобы стратегически комбинировать быстрые слои с линейной сложностью и медленные, но мощные слои с полным вниманием.
В обзоре выделяют два типа гибридизации: межслойную, как в Jamba, где разные типы слоев чередуются, и внутрислойную, где в одном слое разные головы могут использовать разные механизмы внимания.
Это неавторегрессионные модели, которые генерируют текст, постепенно восстанавливая его из шума. Их главная фишка в параллельном декодировании, что дает ощутимое ускорение инференса.
В конце обзора есть анализ применения всех этих архитектур в разных модальностях - CV и аудио.
Так что, если хотите быстро разобраться в базовых методах, которые будут двигать дизайн LLM в ближайшее время,
@ai_machinelearning_big_data
#AI #ML #LLM #Architectures
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤14👍6🔥6
KOSMOS 2.5 от Microsoft наконец-то интегрирован в huggingface Transformers 🙌🔥
Это end-to-end Document AI модель, похожая на Donut/Pix2Struct, обученная на 357,4 млн документов.
✨ Основные возможности:
- Конвертация изображений в Markdown
- OCR с пространственными координатами
- Общение напрямую с документами
Огромный шаг для Document AI и мультимодальных рабочих процессов!
🟢 Models : https://huggingface.co/models?search=microsoft/kosmos-2.5
🟢 Docs: https://huggingface.co/docs/transformers/main/en/model_doc/kosmos2_5
#AI #HuggingFace #Microsoft #DocumentAI
Это end-to-end Document AI модель, похожая на Donut/Pix2Struct, обученная на 357,4 млн документов.
✨ Основные возможности:
- Конвертация изображений в Markdown
- OCR с пространственными координатами
- Общение напрямую с документами
Огромный шаг для Document AI и мультимодальных рабочих процессов!
#AI #HuggingFace #Microsoft #DocumentAI
Please open Telegram to view this post
VIEW IN TELEGRAM
👍11❤5🔥5
Forwarded from Machinelearning
Институт искусственного интеллекта Аллена выпустил OLMoASR, семейство из 6 моделей для автоматического распознавания английской речи.
По результатам тестов на 21 датасете, модели OLMoASR показали производительность, сопоставимую с Whisper от OpenAI, а в некоторых случаях и превзошли ее, особенно при работе с длинными аудиозаписями.
Проект полностью открытый: опубликованы не только веса моделей, но и датасет, код для обработки данных, а также скрипты для обучения и оценки. Все компоненты, включая код и данные, доступны на GitHub и Hugging Face.
@ai_machinelearning_big_data
#AI #ML #ASR #OLMoASR #AI2
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤10👍5🔥5
🧠 Новый шаг к мозгу на чипе
Учёные из Stanford, Sandia National Labs и Purdue создали искусственные нейроны, которые могут передавать и электрические, и световые сигналы одновременно — так же, как это делают настоящие клетки мозга.
⚡ В мозге нейроны общаются короткими электрическими импульсами. Большинство нейроморфных чипов копируют только это.
💡 Но на дальние расстояния куда эффективнее работает свет.
🔬 Новые электро-оптические нейроны из диоксида ниобия решают этот разрыв:
— каждый импульс несёт электрический сигнал для локальной обработки
— и синхронный световой импульс, который может передаваться дальше
Это значит, что один искусственный нейрон теперь может и вычислять, и коммуницировать одновременно.
💡 Перспектива: интеграция электрических и оптических функций в одной системе без дорогого оборудования и конвертации сигналов.
Источник: techxplore.com/news/2025-08-scientists-private-ai.html
#AI #Neuroscience #Innovation #Neuromorphic
Учёные из Stanford, Sandia National Labs и Purdue создали искусственные нейроны, которые могут передавать и электрические, и световые сигналы одновременно — так же, как это делают настоящие клетки мозга.
⚡ В мозге нейроны общаются короткими электрическими импульсами. Большинство нейроморфных чипов копируют только это.
💡 Но на дальние расстояния куда эффективнее работает свет.
🔬 Новые электро-оптические нейроны из диоксида ниобия решают этот разрыв:
— каждый импульс несёт электрический сигнал для локальной обработки
— и синхронный световой импульс, который может передаваться дальше
Это значит, что один искусственный нейрон теперь может и вычислять, и коммуницировать одновременно.
💡 Перспектива: интеграция электрических и оптических функций в одной системе без дорогого оборудования и конвертации сигналов.
Источник: techxplore.com/news/2025-08-scientists-private-ai.html
#AI #Neuroscience #Innovation #Neuromorphic
🔥14❤5👍4
🧩 ArcMemo — память для LLM, которая учит модель сохранять и переиспользовать концепты при решении задач.
📈 Результат: +7.5% относительно базовой модели на бенчмарке ARC-AGI.
❓ Проблема:
Обычно длинные цепочки рассуждений исчезают после каждого запроса, и модель «забывает» полезные паттерны.
💡 Решение — ArcMemo:
- Сохраняет абстрактные модули в виде концептов на естественном языке или в виде параметрических мини-функций.
- Концепты бывают двух типов:
- Открытые: описание ситуации + подсказка.
- Программные: псевдокод и функции с параметрами.
- После решения задача конспектируется в набор таких концептов.
- При новой задаче модель подбирает релевантные концепты и комбинирует их для решения.
- С обратной связью на тестах память обновляется и расширяется.
📌 Вывод: память в виде модульных концептов повышает переносимость и делает решения более стабильными.
🔗 Paper: arxiv.org/abs/2509.04439
#AI #LLM #ARCAGI #Reasoning #Memory
📈 Результат: +7.5% относительно базовой модели на бенчмарке ARC-AGI.
❓ Проблема:
Обычно длинные цепочки рассуждений исчезают после каждого запроса, и модель «забывает» полезные паттерны.
💡 Решение — ArcMemo:
- Сохраняет абстрактные модули в виде концептов на естественном языке или в виде параметрических мини-функций.
- Концепты бывают двух типов:
- Открытые: описание ситуации + подсказка.
- Программные: псевдокод и функции с параметрами.
- После решения задача конспектируется в набор таких концептов.
- При новой задаче модель подбирает релевантные концепты и комбинирует их для решения.
- С обратной связью на тестах память обновляется и расширяется.
📌 Вывод: память в виде модульных концептов повышает переносимость и делает решения более стабильными.
🔗 Paper: arxiv.org/abs/2509.04439
#AI #LLM #ARCAGI #Reasoning #Memory
❤13🔥4👍2
📊 Неожиданная статистика по ИИ-ассистентам
Сообщают, что Microsoft Copilot значительно опережает Gemini по числу пользователей. На первый взгляд это выглядит странно.
Возможное объяснение: речь идёт не о реальном использовании, а о количестве активированных аккаунтов и доступе по умолчанию (Copilot встроен в Windows и Office).
Ещё более удивительно, что Claude якобы сильно отстаёт — и это тоже вызывает вопросы, ведь его активно используют в сообществе.
⚡️ Мораль: статистику по ИИ стоит читать внимательно — важно, что именно считают: доступ, активации или реальное использование.
https://gs.statcounter.com/ai-chatbot-market-share#monthly-202508-202508-bar
#ai #copilot #gemini #claude
Сообщают, что Microsoft Copilot значительно опережает Gemini по числу пользователей. На первый взгляд это выглядит странно.
Возможное объяснение: речь идёт не о реальном использовании, а о количестве активированных аккаунтов и доступе по умолчанию (Copilot встроен в Windows и Office).
Ещё более удивительно, что Claude якобы сильно отстаёт — и это тоже вызывает вопросы, ведь его активно используют в сообществе.
⚡️ Мораль: статистику по ИИ стоит читать внимательно — важно, что именно считают: доступ, активации или реальное использование.
https://gs.statcounter.com/ai-chatbot-market-share#monthly-202508-202508-bar
#ai #copilot #gemini #claude
😁9❤7👍3🔥2
DeepCode превращает научные статьи и технические документы в готовые проекты, включая фронтенд, бэкенд и полноценные репозитории.
🔹 Основные возможности:
• Paper2Code — реализация идей из исследований в рабочий код
• Text2Web — генерация интерфейсов по описанию
• Text2Backend — автоматическое создание масштабируемых серверов
• Поддержка длинных документов и многофайловых проектов
🔜 В ближайшее время разработчики обещают:
• Автоматическую проверку и валидацию кода
• Повышение скорости генерации
• Улучшенную работу с требованиями
• Бенчмарки воспроизведения научных статей (PaperBench)
Проект полностью open source: https://github.com/HKUDS/DeepCode
#deepcode #AI #coding
Please open Telegram to view this post
VIEW IN TELEGRAM
❤13👍7🔥4🤨1
📖 Новая работа ByteDance + Harvard: *Mycroft: Tracing Dependencies in Collective Communication Towards Reliable LLM Training*
Mycroft - система, которая помогает понять, почему обучение LLM на кластере GPU тормозит или падает.
🚧 Проблема
При распределённом обучении сотни GPU постоянно обмениваются данными через библиотеку NCCL. Она работает как «чёрный ящик»: при сбое видно только таймауты или падение скорости, но непонятно, где именно сбой.
🛠 Решение — Mycroft
- «Подглядывает» внутрь процесса обмена данными
- Каждые 100 мс пишет лёгкие статусы: сколько данных подготовлено, отправлено и завершено
- Если прогресс застопорился → сразу сигнал
- Отслеживает зависимости между GPU и определяет: проблема в конкретной карте, сетевой карте или шине
⚡ Результаты
- В тестах на 32 GPU и в проде у ByteDance
- Находит сбой за ~**15 секунд**
- Указывает точный компонент за <**20 секунд**
- Нагрузка на обучение почти нулевая
🔗 https://arxiv.org/abs/2509.03018
#AI #LLM #GPU #DistributedTraining #ByteDance #Harvard
Mycroft - система, которая помогает понять, почему обучение LLM на кластере GPU тормозит или падает.
🚧 Проблема
При распределённом обучении сотни GPU постоянно обмениваются данными через библиотеку NCCL. Она работает как «чёрный ящик»: при сбое видно только таймауты или падение скорости, но непонятно, где именно сбой.
🛠 Решение — Mycroft
- «Подглядывает» внутрь процесса обмена данными
- Каждые 100 мс пишет лёгкие статусы: сколько данных подготовлено, отправлено и завершено
- Если прогресс застопорился → сразу сигнал
- Отслеживает зависимости между GPU и определяет: проблема в конкретной карте, сетевой карте или шине
⚡ Результаты
- В тестах на 32 GPU и в проде у ByteDance
- Находит сбой за ~**15 секунд**
- Указывает точный компонент за <**20 секунд**
- Нагрузка на обучение почти нулевая
🔗 https://arxiv.org/abs/2509.03018
#AI #LLM #GPU #DistributedTraining #ByteDance #Harvard
❤6🔥6👍4
💰Perplexity привлекла $200M при оценке в $20B.
Это произошло всего через два месяца после предыдущего раунда в $100M при оценке $18B. Общий объём инвестиций приближается к $1.5B.
📊 Выручка (ARR) уже почти $200M (месяц назад была $150M).
💡 Оценка в $20B при $200M ARR даёт мультипликатор ~100x - это возможно только при очень быстром росте и низком уровне оттока пользователей.
Perplexity выделяется тем, что отвечает на запросы с источниками и краткими сводками, заменяя «охоту за ссылками» на результат, сгенерированный моделью.
Но такой дизайн требует больших вычислительных мощностей: каждый запрос запускает веб-поиск, инференс LLM и генерацию ответа в реальном времени.
Источник: https://techcrunch.com/2025/09/10/perplexity-reportedly-raised-200m-at-20b-valuation/
#AI #Perplexity #Funding #Startups #LLM #Investments
Это произошло всего через два месяца после предыдущего раунда в $100M при оценке $18B. Общий объём инвестиций приближается к $1.5B.
📊 Выручка (ARR) уже почти $200M (месяц назад была $150M).
💡 Оценка в $20B при $200M ARR даёт мультипликатор ~100x - это возможно только при очень быстром росте и низком уровне оттока пользователей.
Perplexity выделяется тем, что отвечает на запросы с источниками и краткими сводками, заменяя «охоту за ссылками» на результат, сгенерированный моделью.
Но такой дизайн требует больших вычислительных мощностей: каждый запрос запускает веб-поиск, инференс LLM и генерацию ответа в реальном времени.
Источник: https://techcrunch.com/2025/09/10/perplexity-reportedly-raised-200m-at-20b-valuation/
#AI #Perplexity #Funding #Startups #LLM #Investments
👍10🔥8❤6
🚀 Release: TimesFM 2.5
Google Research представила обновлённую версию TimesFM 2.5 на Hugging Face (скоро также в BigQuery и **Model Garden**).
TimesFM (Time Series Foundation Model) - модель от Google для прогнозирования временных рядов.
Что нового:
- Существенное повышение точности по сравнению с TimesFM 2.0
- Увеличенная максимальная длина контекста
- Лидерство на GiFT-Eval — TimesFM 2.5 занимает первое место по всем accuracy-метрикам среди zero-shot foundation-моделей
🟠 Репозиторий: https://github.com/google-research/timesfm)
🟠 HF: http://huggingface.co/google/timesfm-2.5-200m-pytorch
@data_analysis_ml
#AI #ML #TimesFM #forecasting #GoogleResearch
Google Research представила обновлённую версию TimesFM 2.5 на Hugging Face (скоро также в BigQuery и **Model Garden**).
TimesFM (Time Series Foundation Model) - модель от Google для прогнозирования временных рядов.
Что нового:
- Существенное повышение точности по сравнению с TimesFM 2.0
- Увеличенная максимальная длина контекста
- Лидерство на GiFT-Eval — TimesFM 2.5 занимает первое место по всем accuracy-метрикам среди zero-shot foundation-моделей
@data_analysis_ml
#AI #ML #TimesFM #forecasting #GoogleResearch
Please open Telegram to view this post
VIEW IN TELEGRAM
❤11🔥6👍4
🚀 Xai представили новый Grok-4 fast — дешёвый, быстрый и с контекстом в 2 млн токенов 🔥
🧠 Архитектура объединяет режимы рассуждений и обычной генерации в одной модели.
Это означает, что можно обрабатывать простые запросы, не тратя лишние вычислительные ресурсы.
💲 Цены радуют:
- Ввод: $0.20 / 1M токенов (fast) и $0.40 / 1M (full)
- Вывод: $0.50 / 1M токенов (fast) и $1.00 / 1M (full)
⚡ Дешево, быстро и с огромным контекстом.
https://x.com/xai/status/1969183326389858448
#ai #grok
🧠 Архитектура объединяет режимы рассуждений и обычной генерации в одной модели.
Это означает, что можно обрабатывать простые запросы, не тратя лишние вычислительные ресурсы.
💲 Цены радуют:
- Ввод: $0.20 / 1M токенов (fast) и $0.40 / 1M (full)
- Вывод: $0.50 / 1M токенов (fast) и $1.00 / 1M (full)
⚡ Дешево, быстро и с огромным контекстом.
https://x.com/xai/status/1969183326389858448
#ai #grok
❤14👍2🔥2
🚀 Новое исследование Hunyuan: Reinforcement Learning on Pre-training Data (RLPT)
Этот метод решает главную проблему масштабирования LLM - ограниченность размеченного текста.
🌟 RLPT даёт моделям возможность учиться рассуждениям напрямую на данных предобучения, без дорогой ручной разметки.
Как это работает:
1️⃣ Модель во время обучения сама исследует данные и учится более общим стратегиям рассуждений.
2️⃣ Никакой дополнительной разметки — награды извлекаются прямо из предобучающих данных.
3️⃣ Награды за предсказание следующего сегмента позволяют масштабировать RL на этапе предобучения.
Результаты:
✅ На Qwen3-4B-Base прирост: +3.0 (MMLU), +5.1 (MMLU-Pro), +8.1 (GPQA-Diamond), +6.0 (KOR-Bench), +6.6 (AIME24), +5.3 (AIME25).
✅ Чем больше вычислений, тем сильнее рост.
✅ Технология создаёт базу для дальнейших улучшений в RLVR.
📄 Подробнее: https://arxiv.org/pdf/2509.19249
#AI #RLPT #LLM #MachineLearning #NLP
@data_analysis_ml
Этот метод решает главную проблему масштабирования LLM - ограниченность размеченного текста.
🌟 RLPT даёт моделям возможность учиться рассуждениям напрямую на данных предобучения, без дорогой ручной разметки.
Как это работает:
1️⃣ Модель во время обучения сама исследует данные и учится более общим стратегиям рассуждений.
2️⃣ Никакой дополнительной разметки — награды извлекаются прямо из предобучающих данных.
3️⃣ Награды за предсказание следующего сегмента позволяют масштабировать RL на этапе предобучения.
Результаты:
✅ На Qwen3-4B-Base прирост: +3.0 (MMLU), +5.1 (MMLU-Pro), +8.1 (GPQA-Diamond), +6.0 (KOR-Bench), +6.6 (AIME24), +5.3 (AIME25).
✅ Чем больше вычислений, тем сильнее рост.
✅ Технология создаёт базу для дальнейших улучшений в RLVR.
📄 Подробнее: https://arxiv.org/pdf/2509.19249
#AI #RLPT #LLM #MachineLearning #NLP
@data_analysis_ml
❤13👍5🔥3
This media is not supported in your browser
VIEW IN TELEGRAM
- Выглядит как обычная таблица, но вместо формул — тысячи моделей
- Поддержка OpenAI-совместимых и локальных LLM
- Можно добавлять столбцы с промптами, редактировать данные вручную или через лайки
- Запуск онлайн или локально (Docker / pnpm)
- Полностью опенсорс (Apache-2.0), легко встроить в пайплайны
- Подходит для классификации, трансформации данных, синтетики и «vibe-тестов» моделей
⚡️ Попробовать
#AI #NoCode #datasets #HuggingFace #LLM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤14🔥4👍2👏2
🔥 Новая SOTA среди моделей на 1.5B параметров
QuestA 🤖 показывает двузначный прирост Pass@1 и даже обгоняет ранние 32B-модели:
- AIME24: 72.50% (+10.73%)
- AIME25: 62.29% (+12.79%)
- HMMT25: 41.67% (+10.11%)
🚀 Секрет в обучении: QuestA использует RL с scaffolded-problems — это снимает конфликт между лёгкими и сложными задачами и даёт более масштабируемое рассуждение.
🔓 Всё в открытом доступе:
- Модель: https://huggingface.co/foreverlasting1202/QuestA-Nemotron-1.5B
- Тренировочный пайплайн: https://github.com/foreverlasting1202/QuestA
- Статья: https://arxiv.org/abs/2507.13266
- Блог: https://mercurial-kidney-02d.notion.site/QuestA-Expanding-Reasoning-Capacity-in-LLMs-via-Question-Augmentation-216b21d08abb81a1bcecfe79e7d1e88a?pvs=73
#LLM #Reasoning #AI #SOTA
@data_analysis_ml
QuestA 🤖 показывает двузначный прирост Pass@1 и даже обгоняет ранние 32B-модели:
- AIME24: 72.50% (+10.73%)
- AIME25: 62.29% (+12.79%)
- HMMT25: 41.67% (+10.11%)
🚀 Секрет в обучении: QuestA использует RL с scaffolded-problems — это снимает конфликт между лёгкими и сложными задачами и даёт более масштабируемое рассуждение.
🔓 Всё в открытом доступе:
- Модель: https://huggingface.co/foreverlasting1202/QuestA-Nemotron-1.5B
- Тренировочный пайплайн: https://github.com/foreverlasting1202/QuestA
- Статья: https://arxiv.org/abs/2507.13266
- Блог: https://mercurial-kidney-02d.notion.site/QuestA-Expanding-Reasoning-Capacity-in-LLMs-via-Question-Augmentation-216b21d08abb81a1bcecfe79e7d1e88a?pvs=73
#LLM #Reasoning #AI #SOTA
@data_analysis_ml
❤6👍3🔥2
Forwarded from Machinelearning
Физики Гарварда создали первый в мире квантовый компьютер, который работает непрерывно без перезапуска.
Ранее квантовые машины держались миллисекунды, максимум - около 13 секунд.
Новая установка работает более 2 часов и может функционировать бесконечно.
Ключевое новшество - решение проблемы потери атомов: система в реальном времени пополняет кубиты, впрыскивая 300 000 атомов в секунду с помощью оптических инструментов.
Учёные считают, что практические, постоянно работающие квантовые компьютеры могут появиться уже в течение 2 лет - с огромным влиянием на медицину, финансы и научные исследования.
thecrimson
По данным The Information, Anthropic продвигает свою модель Claude как основу для создания enterprise-замен привычных приложений вроде Slack. Компания делает ставку на обучение с подкреплением, чтобы улучшить способности модели к программированию.
Похожую стратегию развивает и xAI Илона Маска, но эксперты сомневаются, что крупные корпорации откажутся от укоренившихся систем вроде SAP или ServiceNow. Более вероятно, что первыми такие AI-first инструменты начнут использовать небольшие стартапы.
Тем временем JPMorgan и другие банки активно заявляют об интеграции решений OpenAI, Anthropic и Google, хотя реальные масштабы затрат пока не соответствуют публичному энтузиазму.
theinformation
Comet, запущенный в июле 2025 года, работает как встроенный ассистент: он умеет анализировать страницы, вытаскивать ключевые детали и сердить по ссылкам, проводя многошаговые исследования.
Perplexity также представила Comet Plus за $5 — партнёрскую подписку, которая открывает доступ к контенту от CNN, The Washington Post, Fortune, Los Angeles Times и Condé Nast (The New Yorker, Wired и др.).
Однако запуск совпал с продолжающимися исками от крупных издателей, включая Dow Jones (The Wall Street Journal) и New York Post, обвиняющих стартап в использовании их материалов для обучения ИИ.
Скачать Comet
TechCrunch пишет, что запуск нового соцприложения Sora 2 вызвал тревогу внутри самой OpenAI. Это TikTok-подобная лента, наполненная видео, созданными ИИ, включая дипфейки самого Сэма Альтмана.
Часть исследователей OpenAI считает, что компания уходит от своей миссии ради хайпового контента. Один из сотрудников прямо заявил: «AI-ленты - пугающие. Я был шокирован, узнав, что мы выпускаем Sora 2…»
Сторонники проекта объясняют, что такие продукты нужны, чтобы финансировать фундаментальные исследования и дать пользователям почувствовать силу технологий. В OpenAI утверждают, что хотят «показать людям что-то классное, чтобы они улыбнулись».
Но вместе с ростом Sora OpenAI рискует повторить судьбу классических соцсетей: зависимость, манипуляции c информацией, проблемы с дипфейками и давлением на метрики вовлечённости.
techcrunch
Китай в 2025 году вложит до 98 млрд долларов, но экспортные ограничения на топовые чипы Nvidia и AMD тормозят прогресс.
Huawei продвигает Ascend 910C, однако по памяти, пропускной способности и софту он уступает решениям Nvidia. США разрешили ограниченные продажи H20 и MI308 в Китай с 15% налогом, но топовые GPU недоступны китацы, и разрыв в производительности всё ещё в пользу американцев.
X
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
❤4👍3🔥2🥰2🤣1
This media is not supported in your browser
VIEW IN TELEGRAM
💡 Модель Ming-UniAudio — это универсальный фреймворк, сочетающий понимание речи, генерацию и редактирование.
- Модель Ming-UniAudio — это универсальный фреймворк, сочетающий *понимание речи*, *генерацию* и *редактирование*.
- В её основе лежит единый непрерывный токенизатор речи, интегрирующий семантические и акустические признаки.
- Поддерживается инструкционное редактирование: можно менять звук, содержание или тональность без указания временных фрагментов.
- В бенчмарках показывает конкурентные результаты и для распознавания, и для генерации речи.
- Лицензия: Apache-2.0.
💻 GitHub: https://github.com/inclusionAI/Ming-UniAudio
🤗 Tokenizer: https://huggingface.co/inclusionAI/MingTok-Audio
🤗 Model:
base: https://huggingface.co/inclusionAI/Ming-UniAudio-16B-A3B
edit: https://huggingface.co/inclusionAI/Ming-UniAudio-16B-A3B-Edit
🤗 Benchmark: https://huggingface.co/datasets/inclusionAI/Ming-Freeform-Audio-Edit-Benchmark
🌍 blog: https://xqacmer.github.io/Ming-Unitok-Audio.github.io/
#AI #Speech #SpeechLLM #LLM #GenerativeAI #Audio #ASR #TTS #SpeechEditing
- Модель Ming-UniAudio — это универсальный фреймворк, сочетающий *понимание речи*, *генерацию* и *редактирование*.
- В её основе лежит единый непрерывный токенизатор речи, интегрирующий семантические и акустические признаки.
- Поддерживается инструкционное редактирование: можно менять звук, содержание или тональность без указания временных фрагментов.
- В бенчмарках показывает конкурентные результаты и для распознавания, и для генерации речи.
- Лицензия: Apache-2.0.
💻 GitHub: https://github.com/inclusionAI/Ming-UniAudio
🤗 Tokenizer: https://huggingface.co/inclusionAI/MingTok-Audio
🤗 Model:
base: https://huggingface.co/inclusionAI/Ming-UniAudio-16B-A3B
edit: https://huggingface.co/inclusionAI/Ming-UniAudio-16B-A3B-Edit
🤗 Benchmark: https://huggingface.co/datasets/inclusionAI/Ming-Freeform-Audio-Edit-Benchmark
🌍 blog: https://xqacmer.github.io/Ming-Unitok-Audio.github.io/
#AI #Speech #SpeechLLM #LLM #GenerativeAI #Audio #ASR #TTS #SpeechEditing
❤8🔥3👍2
🧠 DataMind - открытая система для умных дата-агентов
DataMind - это новая архитектура для создания универсальных агентов анализа данных, которые уже превосходят GPT-5 и DeepSeek-V3.1 по качеству рассуждений и работе с кодом.
🧩 Зачем создан DataMind
Сегодня большинство дата-агентов используют закрытые модели и зависят от промпт-инжиниринга.
Открытые решения не умеют устойчиво рассуждать по шагам и работать с разными форматами данных.
Команда DataMind решила эти три главные проблемы:
1. Недостаток качественных данных для обучения
2. Неправильные стратегии обучения
3. Ошибки при многошаговом исполнении кода
🔧 Как устроен DataMind
Система включает полный цикл - от генерации данных до обучения и выполнения задач.
Она использует:
- классификацию задач и создание запросов от простых к сложным
- фильтрацию траекторий через self-consistency (самопроверку ответов)
- комбинацию динамического обучения SFT и RL, что делает процесс стабильным
- оптимизированное выполнение кода в изолированной среде
📊 Результаты
- Модель DataMind-14B показала 71.16 % среднего результата и превзошла GPT-5 и DeepSeek-V3.1
- Лёгкая версия DataMind-7B стала лучшей среди open-source решений — 68.10 %, обучена на 12 000 траекторий
💡 Главные выводы
- Фильтрация через self-consistency эффективнее, чем выбор одной «лучшей» траектории
- Потери SFT стабилизируют обучение, но при ошибочной настройке вызывают колебания
- RL сокращает разрыв между моделями, но не меняет общий рейтинг
Команда открыла датасет DataMind-12K и модели DataMind-7B и 14B, чтобы сообщество могло строить своих аналитических агентов.
📄 Исследование: https://arxiv.org/abs/2509.25084
💻 Код: https://github.com/zjunlp/DataMind
📊 Модели и данные: https://huggingface.co/collections/zjunlp/datamind-687d90047c58bb1e3d901dd8)
#AI #DataScience #LLM #Agents #OpenSource #DataAnalysis #ReinforcementLearning #NLP
DataMind - это новая архитектура для создания универсальных агентов анализа данных, которые уже превосходят GPT-5 и DeepSeek-V3.1 по качеству рассуждений и работе с кодом.
🧩 Зачем создан DataMind
Сегодня большинство дата-агентов используют закрытые модели и зависят от промпт-инжиниринга.
Открытые решения не умеют устойчиво рассуждать по шагам и работать с разными форматами данных.
Команда DataMind решила эти три главные проблемы:
1. Недостаток качественных данных для обучения
2. Неправильные стратегии обучения
3. Ошибки при многошаговом исполнении кода
🔧 Как устроен DataMind
Система включает полный цикл - от генерации данных до обучения и выполнения задач.
Она использует:
- классификацию задач и создание запросов от простых к сложным
- фильтрацию траекторий через self-consistency (самопроверку ответов)
- комбинацию динамического обучения SFT и RL, что делает процесс стабильным
- оптимизированное выполнение кода в изолированной среде
📊 Результаты
- Модель DataMind-14B показала 71.16 % среднего результата и превзошла GPT-5 и DeepSeek-V3.1
- Лёгкая версия DataMind-7B стала лучшей среди open-source решений — 68.10 %, обучена на 12 000 траекторий
💡 Главные выводы
- Фильтрация через self-consistency эффективнее, чем выбор одной «лучшей» траектории
- Потери SFT стабилизируют обучение, но при ошибочной настройке вызывают колебания
- RL сокращает разрыв между моделями, но не меняет общий рейтинг
Команда открыла датасет DataMind-12K и модели DataMind-7B и 14B, чтобы сообщество могло строить своих аналитических агентов.
📄 Исследование: https://arxiv.org/abs/2509.25084
💻 Код: https://github.com/zjunlp/DataMind
📊 Модели и данные: https://huggingface.co/collections/zjunlp/datamind-687d90047c58bb1e3d901dd8)
#AI #DataScience #LLM #Agents #OpenSource #DataAnalysis #ReinforcementLearning #NLP
❤12🔥8👍3
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
Модель GPT-5 Pro заняла первое место среди всех проверенных frontier-LLM на закрытом бенчмарке ARC-AGI Semi-Private. Этот тест оценивает способность моделей к абстрактному рассуждению и решению сложных задач.
Интересно, что GPT-5 Pro всё ещё уступает результатам старого o3-preview, который OpenAI тестировал ещё в декабре прошлого года. Однако тот экспериментальный вариант был почти в 50 раз дороже в вычислительных затратах и никогда не был публично выпущен.
Версия o3-preview (high) достигала впечатляющих 87,5 % точности на ARC-AGI-1, но потребляла 172 раза ресурсов, чем версия (low). Из-за этого она не попала в официальный лидерборд - по правилам, тесты с compute-стоимостью выше $10 000 не публикуются.
GPT-5 Pro является самой мощной из доступных и подтверждённых моделей на Semi-Private ARC-AGI.
В список вошли достижения в самых разных областях: ИИ робототехника, медицина, экология, образование, энергетика и дизайн. Среди ключевых технологий - Claude Sonnet 4 от Anthropic, новая версия ИИ-модели, которая продемонстрировала более точные и безопасные ответы; NVIDIA DGX Spark - «настольный» AI-суперкомпьютер, делающий высокопроизводительные вычисления доступнее; UiPath Agentic Automation, объединяющая работу AI-агентов; и XReal One - компактные AR-очки, приближающие смешанную реальность к массовому использованию.
TIME отметили разработки в области биотехнологий, биопечати тканей, устойчивых источников энергии и переработки отходов. Эти изобретения демонстрируют, как технологии становятся не просто инструментами, а основой будущего образа жизни.
time
Google Cloud опубликовал обновлённый список из 321 корпоративного примера применения генеративного ИИ, что в 10 раз больше, чем годом ранее. Это показывает, что AI уже массово используется в продакшене по всему миру.
В банках и ритейле Commerzbank ИИ обрабатывает 2 млн клиентских чатов с 70% успешных решений, Best Buy ускоряет анализ отзывов, а Mercedes внедрил голосового ассистента на базе Gemini.
Внутри компаний ИИ автоматизирует рутину: Toyota экономит более 10 000 часов в год, Manipal Hospitals сократил передачу смен с 90 до 20 минут, Equifax - 97% сотрудников хотят сохранить AI-лицензии.
Wayfair ускорил настройку окружений на 55%, CME сэкономил 10,5 часов в месяц, а BMW и UPS используют цифровых двойников для моделирования логистики и производств.
Подробнее
Министр экономики Тайваня заявил, что TSMC сохранит свои самые передовые технологии и основное производство на острове, несмотря на предложение США сделать «50 на 50».
Компания вкладывает $165 млрд в шесть фабрик в США, но строит десять на Тайване и планирует новые - там останутся ведущие технологические узлы.
По словам министра, зарубежные заводы допустимы только при реальных заказах, прибыли и отсутствии рисков для безопасности.
Идея «50-50» возникла из-за стремления США увеличить долю внутренних чипов после кризиса поставок 2020–2021 годов.
Аналитики считают, что перенос производства в США слишком дорог и займёт годы, поэтому Вашингтон делает ставку на «friendshoring» - распределённые цепочки поставок между союзниками.
times
Microsoft представила новую модель UserLM-8B, созданную для симуляции поведения пользователя в диалоге. В отличие от обычных LLM, эта модель генерирует реплики от лица человека, включая уточнения, эмоции и ошибки, как в реальном общении.
Модель построена на базе Llama3.1 8B и дообучена на корпусе WildChat-1M, где она анализировала сотни тысяч реальных и синтетических диалогов. Такой подход позволяет создавать реалистичные сценарии общения для тестирования чат-ботов, обучения ассистентов и генерации синтетических данных.
HF
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥4❤3👍3
Forwarded from Machinelearning
Новая архитектура Mamba-3 делает модели быстрее, стабильнее и эффективнее при работе с длинными контекстами.
Главная идея - не в слоях внимания, а в state-space моделях, где модель хранит и обновляет внутреннее состояние во времени.
📘 Краткие эускурс:
- Mamba-1 ввела непрерывную динамику и выборочное обновление памяти - помнила эффективно без высокой цены attention.
- Mamba-2 показала, что обновления состояния и attention - это две стороны одной математики, что ускорило вычисления на GPU.
- Mamba-3 довела концепцию до зрелости: теперь внутренняя память развивается плавнее и устойчивее за счёт перехода от простого шага Эйлера к трапецеидальному интегрированию.
Вместо простого шага Эйлера, как в Mamba-2, Mamba-3 аппроксимирует интеграл обновления состояния не только по правому концу интервала, но усреднением между началом и концом, с коэффициентом λ, зависящим от данных. Это даёт более точное приближение (второго порядка) и делает динамику состояния более выразительной.
🧠 Что изменилось под капотом:
- Память стала «ритмичной»: теперь модель может хранить повторяющиеся и периодические паттерны (например, структуры языка или музыки).
- Новый multi-input-multi-output дизайн позволяет обрабатывать несколько потоков параллельно — идеально для современных GPU.
⚙️ Что это даёт на практике:
- Эффективная работа с длинными последовательностями: документы, геномы, временные ряды.
- Линейное время выполнения и стабильная задержка делают её идеальной для реального времени: чат-ботов, перевода, речи.
- Энергоэффективность и масштабируемость открывают путь к on-device AI, где большие модели работают локально, без облака.
Mamba-3 - это не просто ускоренная альтернатива Transformers.
Это новая архитектура, которая объединяет глубокое понимание контекста, скорость и устойчивость, от серверных систем до умных устройств.
@ai_machinelearning_big_data
#ssm #mamba3 #llm,#architecture #ai
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤15👍7
Samsung решила изменить правила игры на рынке чипов и убедить Nvidia повысить официальную скорость HBM4, даже несмотря на то, что конкуренты: SK Hynix и Micron - раньше показали первые образцы.
Обычно разработчики HBM (High Bandwidth Memory) делают акцент на контроле температуры, ведь многослойная DRAM быстро нагревается. Но теперь Nvidia потребовала большего - выше частоты, выше скорость.
Для Hynix и Micron это стало неожиданностью: их решения оптимизированы под стабильность, а не под разгон.
А вот Samsung оказалась готова. Её HBM4-чипы уже достигли более высоких частот на тестах - благодаря технологическому преимуществу:
- DRAM-чипы производятся по 1c-процессу (6-е поколение 10 нм),
- базовый логический кристалл - на 4-нм техпроцессе Samsung Foundry.
Для сравнения:
- SK Hynix использует 12-нм процесс TSMC,
- Micron - старый DRAM-процесс.
Более продвинутая литография даёт Samsung лучший контроль над энергопотреблением и сигналами.
Компания уже ускоряет производство и планирует вывести HBM4 на рынок в 2026 году, когда спрос на память для AI-систем резко превысит предложение.
Такой шаг может вернуть Samsung утраченные позиции после неудачи с HBM3E.
Ключевой момент - тесты Nvidia Rubin. Если HBM4 покажет проблемы с нагревом или надёжностью при интеграции, вся стратегия может рухнуть.
Но если всё пройдёт успешно, Samsung сможет опередить Hynix и Micron, снова захватив лидерство в памяти для AI-ускорителей.
Итог: Samsung делает ставку на скорость, технологии и масштаб. Это рискованный, но стратегический шаг, который может определить баланс сил на рынке AI-чипов в ближайшие годы.
#Samsung #Nvidia #AI
Please open Telegram to view this post
VIEW IN TELEGRAM
❤7👍4🔥3