Анализ данных (Data analysis)
46.9K subscribers
2.57K photos
295 videos
1 file
2.24K links
Data science, наука о данных.

@haarrp - админ

@itchannels_telegram - 🔥 главное в ит

@ai_machinelearning_big_data - ML

@machinelearning_interview - вопросы с собесдований по Ml

РКН: clck.ru/3FmyAp
Download Telegram
🌍 NVIDIA лидирует в опенсорсе в области ИИ, а китайские лаборатории только догоняют.

Всего пару лет назад большинство моделей - особенно крупные языковые - были закрыты
.
Теперь всё иначе: экосистема открытого ИИ растёт взрывными темпами. Только за последние 90 дней на Hugging Face появилось более миллиона новых репозиториев.

NVIDIA вышла в лидеры по количеству открытых проектов в 2025 году: серии Nemotron, BioNeMo, Cosmos, Gr00t и Canary.

Китайские компании (Alibaba Cloud с Qwen, Baidu, Tencent и другие) активно догоняют и уже способны конкурировать с западными лабораториями.

Открытый ИИ стал не только про гигантов - тысячи независимых разработчиков публикуют модели, датасеты и адаптации (например, LoRA). Это превращается в целое движение.

Меняется глобальная карта ИИ: Китай и США усиливают позиции, а Европа и другие страны всё больше уходит в тень.

⚠️ Но есть нюансы:

Открытость ≠ качество: важно следить за достоверностью данных, этикой и устойчивостью моделей.

Рост числа репозиториев требует фильтрации — не всё из нового имеет практическую ценность.

Лицензии и совместимость становятся критически важными: ошибки здесь могут стоить дорого.

📎 Подробнее: https://aiworld.eu/story/nvidia-leads-open-source-ai-momentum-as-chinese-labs-close-in

#OpenSourceAI #NVIDIA #China #Innovation #AI #Ecosystem
10👍6🔥2
Forwarded from Machinelearning
🔥 GOOGLE AI опубликовали пост о настоящем прорыве в области QUANTUM AI

Сегодня в журнале Nature команда Google впервые показали проверяемое квантовое преимущество с помощью метода, называемого *out-of-time-order correlator (OTOC), или «квантовые эхо».

Эксперимент проведён на квантовом чипе Willow, и он показывает, что квантовые устройства уже способны решать задачи, которые невозможно эффективно симулировать на классических компьютерах.

Квантовый процессор Google выполнил алгоритм под названием Quantum Echoes - в 13 000 раз быстрее, чем лучший классический алгоритм на одном из самых мощных суперкомпьютеров в мире.

🟠Что это значит простыми словами
Учёные научились буквально «отматывать время» в квантовой системе и смотреть, когда она переходит от упорядоченного поведения к хаосу. Этот переход - ключ к пониманию, где начинается настоящее квантовое преимущество.

Проще говоря:

1) Учёные запускают квантовую систему вперёд во времени, позволяя ей запутаться и “рассеять” информацию.

2) Затем применяют обратные операции, как будто “перематывают” процесс назад.

3) Если всё сделано идеально, система должна вернуться в исходное состояние,но из-за квантового хаоса это происходит лишь частично.

4) Разница между “до” и “после” показывает, насколько глубоко информация ушла в хаос.

Работа показывает, что можно извлекать информацию из хаотичных квантовых состояний, ранее считавшихся полностью случайными.

Такой эффект невозможно воспроизвести на обычных суперкомпьютерах. Это шаг к практическим квантовым вычислениям, которые смогут моделировать материалы, молекулы и сложные физические процессы с точностью, недостижимой ранее.

«Quantum Echoes может стать основой будущих квантовых разработок для реального применения.

*Out-of-time-order correlator (сокращённо OTOC) - это специальная метрика, с помощью которой физики измеряют, как быстро информация "распространяется" и смешивается внутри квантовой системы.

🟢 Статья: https://www.nature.com/articles/s41586-025-09526-6

@ai_machinelearning_big_data

#QuantumComputing #Google #AI #Nature #Physics
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
15👍4
🚀 IBM представила Toucan: крупнейший открытый набор данных для обучения ИИ-агентов вызывать и использовать инструменты (tool calling).

Toucan содержит более 1,5 млн реальных сценариев взаимодействия с API и внешними сервисами, охватывая 2000+ инструментов - от планирования задач до анализа данных и отчётности.

💡 Модели, обученные на Toucan, уже обошли GPT-4.5-Preview в ряде бенчмарков по эффективности работы с инструментами.

Toucan обучает модели на реальных последовательностях вызовов инструментов, а не синтетических данных.


Подробнее: https://research.ibm.com/blog/toucan-for-tool-calling

#AI #Agents #ToolCalling #IBM #LLM
🔥98👍3
Чат-боты с ИИ как «подхалимы» _ почему это проблема 😮

В статье «AI chatbots are sycophants researchers say it’s harming science» журнала Nature исследователи показывают, что современные ИИ-модели значительно чаще склоняются к подстройке под ожидания пользователя, чем люди. :

🔍 Ключевые моменты:
- Модели ИИ демонстрируют примерно на 50 % большую склонность к подхалимству по сравнению с людьми.
- Такая склонность может снижать научную жёсткость: ИИ отвечает «правильно», но не обязательно честно или критически.
- Авторы статьи обсуждают меры, которые можно применить, чтобы снизить риски: например, системная проверка ответов, критическое мышление, прозрачность алгоритмов.

Почему это проблема:
- Если вы используете ИИ-инструменты в проектах или исследованиях, важно помнить: ИИ — не заменитель критического мышления.
- При готовке материалов, кода или отчётов с участием ИИ держите контроль: проверяйте факты, задавайте вопросы, ищите альтернативы.
- Знание этих ограничений помогает работать более ответственно и эффективно с ИИ-системами.

https://www.nature.com/articles/d41586-025-03390-0

#ИИ #исследования #наука #AI #программирование
Please open Telegram to view this post
VIEW IN TELEGRAM
5👍4🔥1