🚀 IBM представила Toucan: крупнейший открытый набор данных для обучения ИИ-агентов вызывать и использовать инструменты (tool calling).
Toucan содержит более 1,5 млн реальных сценариев взаимодействия с API и внешними сервисами, охватывая 2000+ инструментов - от планирования задач до анализа данных и отчётности.
💡 Модели, обученные на Toucan, уже обошли GPT-4.5-Preview в ряде бенчмарков по эффективности работы с инструментами.
Toucan обучает модели на реальных последовательностях вызовов инструментов, а не синтетических данных.
Подробнее: https://research.ibm.com/blog/toucan-for-tool-calling
#AI #Agents #ToolCalling #IBM #LLM
Toucan содержит более 1,5 млн реальных сценариев взаимодействия с API и внешними сервисами, охватывая 2000+ инструментов - от планирования задач до анализа данных и отчётности.
💡 Модели, обученные на Toucan, уже обошли GPT-4.5-Preview в ряде бенчмарков по эффективности работы с инструментами.
Toucan обучает модели на реальных последовательностях вызовов инструментов, а не синтетических данных.
Подробнее: https://research.ibm.com/blog/toucan-for-tool-calling
#AI #Agents #ToolCalling #IBM #LLM
🔥11❤9👍4
Forwarded from Machinelearning
🤖 MiniMax-M2: компактная MoE-модель
MiniMax-M2 переосмысливает эффективность: это 230 млрд параметров (из них активно только 10 млрд) - мощная, быстрая и экономичная модель, которая сочетает интеллект уровня топовых LLM с оптимизацией под агентные применения и программирование.
🔹 Основные особенности
🧠 Интеллект мирового уровня.
По данным *Artificial Analysis*, MiniMax-M2 демонстрирует отличные результаты в математике, науке, программировании, следовании инструкциям и использовании инструментов.
Модель занимает #1 место среди всех open-source моделей по суммарному индексу интеллекта.
💻 Кодинг
Разработана для полного цикла разработкт - от файловых правок до тестировании кода и его автокоррекции.
Модель показывает отличные результаты на Terminal-Bench и (Multi-)SWE-Bench, что делает её эффективной в IDE, терминалах и CI-системах.
🧩 Агентные возможности.
MiniMax-M2 умеет планировать и выполнять сложные цепочки действий через shell, браузер, retrieval и code runners.
В тестах BrowseComp уверенно находит труднодоступные источники и восстанавливается после сбоев, не теряя цепочку рассуждений.
MiniMax M2 построена по принципу GPT-OSS и использует сочетание Full Attention и Sliding Window Attention (SWA). Это помогает эффективно работать с длинным контекстом - часть модели анализирует всё сразу, другая концентрируется на ближайших фрагментах текста.
Каждая attention-голова имеет собственный RMSNorm, а блоки Full Attention и SWA используют разные RoPE-параметры, это повышает гибкость и устойчивость модели.
MiniMax-M2 - это новый стандарт эффективности для AGI-агентов и кодинга: умнее, быстрее и дешевле, чем аналоги.
https://huggingface.co/MiniMaxAI/MiniMax-M2
@ai_machinelearning_big_data
#AI #MiniMax #LLM #ArtificialIntelligence #Benchmarks
MiniMax-M2 переосмысливает эффективность: это 230 млрд параметров (из них активно только 10 млрд) - мощная, быстрая и экономичная модель, которая сочетает интеллект уровня топовых LLM с оптимизацией под агентные применения и программирование.
🔹 Основные особенности
🧠 Интеллект мирового уровня.
По данным *Artificial Analysis*, MiniMax-M2 демонстрирует отличные результаты в математике, науке, программировании, следовании инструкциям и использовании инструментов.
Модель занимает #1 место среди всех open-source моделей по суммарному индексу интеллекта.
💻 Кодинг
Разработана для полного цикла разработкт - от файловых правок до тестировании кода и его автокоррекции.
Модель показывает отличные результаты на Terminal-Bench и (Multi-)SWE-Bench, что делает её эффективной в IDE, терминалах и CI-системах.
🧩 Агентные возможности.
MiniMax-M2 умеет планировать и выполнять сложные цепочки действий через shell, браузер, retrieval и code runners.
В тестах BrowseComp уверенно находит труднодоступные источники и восстанавливается после сбоев, не теряя цепочку рассуждений.
MiniMax M2 построена по принципу GPT-OSS и использует сочетание Full Attention и Sliding Window Attention (SWA). Это помогает эффективно работать с длинным контекстом - часть модели анализирует всё сразу, другая концентрируется на ближайших фрагментах текста.
Каждая attention-голова имеет собственный RMSNorm, а блоки Full Attention и SWA используют разные RoPE-параметры, это повышает гибкость и устойчивость модели.
MiniMax-M2 - это новый стандарт эффективности для AGI-агентов и кодинга: умнее, быстрее и дешевле, чем аналоги.
https://huggingface.co/MiniMaxAI/MiniMax-M2
@ai_machinelearning_big_data
#AI #MiniMax #LLM #ArtificialIntelligence #Benchmarks
❤9👍7
🤖 Multi-Agent Evolve теперь полностью open-source 🚀
С его кодовой базой ты можешь взять любой LLM-чекпойнт и позволить ему саморазвиваться без внешнего надзора.
Это экспериментальная система, в которой агенты эволюционируют, создавая и оценивая собственные улучшения.
💻 Код:
https://github.com/ulab-uiuc/Multi-agent-evolve
🤗 Модели (Checkpoints):
https://huggingface.co/collections/ulab-ai/multi-agent-evolve
#AI #LLM #MultiAgent #OpenSource #EvolutionaryAI
С его кодовой базой ты можешь взять любой LLM-чекпойнт и позволить ему саморазвиваться без внешнего надзора.
Это экспериментальная система, в которой агенты эволюционируют, создавая и оценивая собственные улучшения.
💻 Код:
https://github.com/ulab-uiuc/Multi-agent-evolve
🤗 Модели (Checkpoints):
https://huggingface.co/collections/ulab-ai/multi-agent-evolve
#AI #LLM #MultiAgent #OpenSource #EvolutionaryAI
🔥15👍2🥰2🤨1
Модель построена на архитектуре Mixture of Experts с общим размером 406B параметров и 32B активных.
Модель поддерживает контекст 256K токенов. HY 2.0 демонстрирует заметные улучшения на ключевых бенчмарках.
Главные достижения HY 2.0:
🧠 Reasoning: результат 73.4 на IMO AnswerBench - почти плюс 20 процентов, что закрепляет модель среди лидеров по математическому и научному мышлению.
🛠 Coding и Agents: скачок в SWE Bench Verified с 6.0 до 53.0, а Tau2 Bench вырос с 17.1 до 72.4.
⚡ Instruction Following: более стабильное выполнение сложных инструкций и естественный стиль ответов.
Модель выпускается в двух вариантах:
• HY 2.0 Think - для глубокого рассуждения, генерации кода и сложных задач
• HY 2.0 Instruct - для диалога, креативного письма и многотуровых контекстных бесед
🌐 Website: https://hunyuan.tencent.com
🔗 API Access: http://hunyuan.cloud.tencent.com/#/app/modelSquare
📄 Documentation: https://cloud.tencent.com/document/product/1729/104753
@data_analysis_ml
#AI #Tencent #Hunyuan #HY2 #LLM #MoE #DeepLearning #AIModels
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤12👍7🔥3