⚡️ Как только вы перейдете на Parquet...
...вы никогда не вернетесь к CSV.
Parquet — это формат хранения данных, разработанный для эффективного анализа больших объемов данных.
Он обеспечивает высокую производительность чтения и записи, а также поддерживает сжатие данных, что позволяет сэкономить место на диске.
В Python существует несколько библиотек для работы с форматом Parquet, наиболее популярной из них является pyarrow.
#junior #parquet
...вы никогда не вернетесь к CSV.
Parquet — это формат хранения данных, разработанный для эффективного анализа больших объемов данных.
Он обеспечивает высокую производительность чтения и записи, а также поддерживает сжатие данных, что позволяет сэкономить место на диске.
В Python существует несколько библиотек для работы с форматом Parquet, наиболее популярной из них является pyarrow.
pip install pyarrow
import pyarrow.parquet as pq
# Чтение данных из файла Parquet
table = pq.read_table('example.parquet')
df = table.to_pandas() # Преобразование таблицы Parquet в объект pandas DataFrame
# Запись данных в файл Parquet
table = pq.Table.from_pandas(df)
pq.write_table(table, 'example.parquet')
https://pypi.org/project/parquet/#junior #parquet
@data_analysis_ml🔥41👍16❤4
💾 Зачем нужен Delta Lake, если есть Parquet
Обычный Parquet хранит только одно состояние таблицы.
Если вы сохранили отфильтрованный DataFrame, то старые данные исчезли навсегда.
❌ Отката (rollback) нет → потеряли 10 000 строк, осталось только 3 500.
⚡ Delta Lake работает иначе:
- каждый раз создаётся новая версия данных
- можно вернуться к любой версии в прошлом
- данные всегда под контролем и без потерь
📌 Пример:
- Parquet → фильтр → оригинал стёрт
- Delta Lake → версия 0 (10 000 строк) + версия 1 (3 500 строк) → всегда можно вернуться к версии 0
✅ Итог: с Delta Lake данные становятся версионируемыми и надёжными.
#datalake #parquet #bigdata #delta
Обычный Parquet хранит только одно состояние таблицы.
Если вы сохранили отфильтрованный DataFrame, то старые данные исчезли навсегда.
❌ Отката (rollback) нет → потеряли 10 000 строк, осталось только 3 500.
⚡ Delta Lake работает иначе:
- каждый раз создаётся новая версия данных
- можно вернуться к любой версии в прошлом
- данные всегда под контролем и без потерь
📌 Пример:
- Parquet → фильтр → оригинал стёрт
- Delta Lake → версия 0 (10 000 строк) + версия 1 (3 500 строк) → всегда можно вернуться к версии 0
✅ Итог: с Delta Lake данные становятся версионируемыми и надёжными.
#datalake #parquet #bigdata #delta
🔥14❤8🤨4😐2