How to Implement GAN Hacks to Train Stable Generative Adversarial Networks
https://machinelearningmastery.com/how-to-code-generative-adversarial-network-hacks/
https://machinelearningmastery.com/how-to-code-generative-adversarial-network-hacks/
MachineLearningMastery.com
How to Implement GAN Hacks in Keras to Train Stable Models - MachineLearningMastery.com
Generative Adversarial Networks, or GANs, are challenging to train.
This is because the architecture involves both a generator and a discriminator model that compete in a zero-sum game. It means that improvements to one model come at the cost of a degrading…
This is because the architecture involves both a generator and a discriminator model that compete in a zero-sum game. It means that improvements to one model come at the cost of a degrading…
Stand-Alone Self-Attention in Vision Models
Paper: https://arxiv.org/abs/1906.05909
Paper: https://arxiv.org/abs/1906.05909
arXiv.org
Stand-Alone Self-Attention in Vision Models
Convolutions are a fundamental building block of modern computer vision systems. Recent approaches have argued for going beyond convolutions in order to capture long-range dependencies. These...
The 2019 IEEE Conference on Computer Vision and Pattern Recognition
Best Papers
https://syncedreview.com/2019/06/18/cvpr-2019-attracts-9k-attendees-best-papers-announced-imagenet-honoured-10-years-later/
Best Papers
https://syncedreview.com/2019/06/18/cvpr-2019-attracts-9k-attendees-best-papers-announced-imagenet-honoured-10-years-later/
Synced | AI Technology & Industry Review
CVPR 2019 Attracts 9K Attendees; Best Papers Announced; ImageNet Honoured 10 Years Later | Synced
The 2019 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) kicked off today in Long Beach, California. CVPR is one of the world’s top three academic conferences in the field of computer vision (along with ICCV and ECCV). A total of 1300 papers…
We Can All Become Video Game Characters With This AI
Video: https://www.youtube.com/watch?v=Y73iUAh56iI
Paper: https://arxiv.org/abs/1904.08379
Video: https://www.youtube.com/watch?v=Y73iUAh56iI
Paper: https://arxiv.org/abs/1904.08379
Adapters: A Compact and Extensible Transfer Learning Method for NLP
https://medium.com/dair-ai/adapters-a-compact-and-extensible-transfer-learning-method-for-nlp-6d18c2399f62
https://medium.com/dair-ai/adapters-a-compact-and-extensible-transfer-learning-method-for-nlp-6d18c2399f62
Medium
Adapters: A Compact and Extensible Transfer Learning Method for NLP
Adapters obtain comparable results to BERT on several NLP tasks while achieving parameter efficiency.
Machine Learning Free Course with TensorFlow APIs by Google
https://developers.google.com/machine-learning/crash-course/
https://developers.google.com/machine-learning/crash-course/
Google for Developers
Machine Learning | Google for Developers
A Gentle Introduction to Upsampling and Transpose Convolution Layers for GANs
Generative Adversarial Networks, or GANs, are an architecture for training generative models, such as deep convolutional neural networks for generating images
Generative Adversarial Networks, or GANs, are an architecture for training generative models, such as deep convolutional neural networks for generating images
TensorFlow in Practice Specialization
Best practices for TensorFlow, a popular open-source machine learning framework to train a neural network for a computer vision applications
Best practices for TensorFlow, a popular open-source machine learning framework to train a neural network for a computer vision applications
Coursera
DeepLearning.AI TensorFlow Developer
Offered by DeepLearning.AI. Learn to build AI apps with ... Enroll for free.
Innovations in Graph Representation Learning
http://ai.googleblog.com/2019/06/innovations-in-graph-representation.html
http://ai.googleblog.com/2019/06/innovations-in-graph-representation.html
blog.research.google
Innovations in Graph Representation Learning
Boosting Machine Learning Tutorial | Gradient Boosting, XGBoost
https://www.youtube.com/watch?v=kho6oANGu_A
https://www.youtube.com/watch?v=kho6oANGu_A
YouTube
Boosting Machine Learning Tutorial | Adaptive Boosting, Gradient Boosting, XGBoost | Edureka
** Machine Learning Certification Training using Python: https://www.edureka.co/python **
This Edureka session will help you understand all about Boosting Machine Learning and boosting algorithms and how they can be implemented to increase the efficiency…
This Edureka session will help you understand all about Boosting Machine Learning and boosting algorithms and how they can be implemented to increase the efficiency…
Data Augmentation Strategies for Object Detection
Article: https://arxiv.org/abs/1906.11172
GIthub: https://github.com/tensorflow/tpu/tree/master/models/official/detection
Article: https://arxiv.org/abs/1906.11172
GIthub: https://github.com/tensorflow/tpu/tree/master/models/official/detection
arXiv.org
Learning Data Augmentation Strategies for Object Detection
Data augmentation is a critical component of training deep learning models. Although data augmentation has been shown to significantly improve image classification, its potential has not been...
Predicting Bus Delays with Machine Learning
http://ai.googleblog.com/2019/06/predicting-bus-delays-with-machine.html
http://ai.googleblog.com/2019/06/predicting-bus-delays-with-machine.html
research.google
Predicting Bus Delays with Machine Learning
Posted by Alex Fabrikant, Research Scientist, Google Research Hundreds of millions of people across the world rely on public transit for their da...
Announcing the YouTube-8M Segments Dataset
http://ai.googleblog.com/2019/06/announcing-youtube-8m-segments-dataset.html
http://ai.googleblog.com/2019/06/announcing-youtube-8m-segments-dataset.html
blog.research.google
Announcing the YouTube-8M Segments Dataset
How to Develop a GAN for Generating Handwritten Digits
https://machinelearningmastery.com/how-to-develop-a-generative-adversarial-network-for-an-mnist-handwritten-digits-from-scratch-in-keras/
https://machinelearningmastery.com/how-to-develop-a-generative-adversarial-network-for-an-mnist-handwritten-digits-from-scratch-in-keras/
FREE COURSE Intro to TensorFlow for Deep Learning
This course is a practical approach to deep learning for software developers
https://www.udacity.com/course/intro-to-tensorflow-for-deep-learning--ud187
This course is a practical approach to deep learning for software developers
https://www.udacity.com/course/intro-to-tensorflow-for-deep-learning--ud187
Udacity
TensorFlow for Deep Learning Training Course | Udacity
Learn online and advance your career with courses in programming, data science, artificial intelligence, digital marketing, and more. Gain in-demand technical skills. Join today!
How to Develop a GAN for Generating Small Color Photographs of Objects
https://machinelearningmastery.com/how-to-develop-a-generative-adversarial-network-for-a-cifar-10-small-object-photographs-from-scratch/
https://machinelearningmastery.com/how-to-develop-a-generative-adversarial-network-for-a-cifar-10-small-object-photographs-from-scratch/
МегаФон запускает «Фабрику микросервисов» - «завод» по разработке и внедрению новых технологических решений на базе микросервисной архитектуры.
Фабрика базируется в Нижнем Новгороде и будет работать по гибким методологиям Agile, по принципу кросс-функциональных DevOps команд.
В распоряжении «фабрикантов» будут самые передовые инструменты разработки и CI/CD и современный технологический стек.
Стань частью сообщества разработчиков всей группы компаний (Yota, МегаФон, МегаЛабс, NetByNet) – создавай общие инструменты и обменивайся лучшими практиками.
Компания ищет:
Senior/Middle Java Developer - https://job.megafon.ru/vacancy/seniormiddle-java-developer-fabrika-mikroservisov
Quality Assurance engineer - https://job.megafon.ru/vacancy/quality-assurance-engineer-fabrika-mikroservisov
Python Developer - https://job.megafon.ru/vacancy/python-developer-fabrika-mikroservisov
Junior Java Developer - https://job.megafon.ru/vacancy/junior-java-developer-fabrika-mikroservisov
DevOps engineer - https://job.megafon.ru/vacancy/devops-engineer-fabrika-mikroservisov
Системный аналитик - https://job.megafon.ru/vacancy/sistemnyy-analitik-fabrika-mikroservisov
Фабрика базируется в Нижнем Новгороде и будет работать по гибким методологиям Agile, по принципу кросс-функциональных DevOps команд.
В распоряжении «фабрикантов» будут самые передовые инструменты разработки и CI/CD и современный технологический стек.
Стань частью сообщества разработчиков всей группы компаний (Yota, МегаФон, МегаЛабс, NetByNet) – создавай общие инструменты и обменивайся лучшими практиками.
Компания ищет:
Senior/Middle Java Developer - https://job.megafon.ru/vacancy/seniormiddle-java-developer-fabrika-mikroservisov
Quality Assurance engineer - https://job.megafon.ru/vacancy/quality-assurance-engineer-fabrika-mikroservisov
Python Developer - https://job.megafon.ru/vacancy/python-developer-fabrika-mikroservisov
Junior Java Developer - https://job.megafon.ru/vacancy/junior-java-developer-fabrika-mikroservisov
DevOps engineer - https://job.megafon.ru/vacancy/devops-engineer-fabrika-mikroservisov
Системный аналитик - https://job.megafon.ru/vacancy/sistemnyy-analitik-fabrika-mikroservisov