Новая работа MIT: LLM, который видит и меняет состояние Python
В MIT предложили подход, при котором языковая модель работает не только с текстом, а напрямую с живым состоянием Python-кода - переменными, объектами в памяти и текущей точкой выполнения.
Подход называется NIGHTJAR.
Главный результат
В экспериментах NIGHTJAR сократил объем кода в среднем на 39.6% без потери корректности.
В чем была проблема
Обычная LLM:
- читает текст
- генерирует текст
- не видит реальные данные программы
Поэтому типичный пайплайн выглядит так:
- данные сериализуются в текст
- отправляются модели
- ответ парсится
- программа вручную обновляется
Много glue-кода, много мест для ошибок.
Что меняет совместное состояние
Shared state полностью меняет модель взаимодействия:
- LLM может читать и писать переменные
- изменять объекты прямо в памяти
- останавливать и пропускать циклы
- работать с текущим состоянием выполнения
Модель не «рассуждает о коде», она с ним взаимодействует.
Как это реализовано
LLM не получает прямой доступ к памяти.
Она отправляет небольшие команды:
- прочитать переменную
- записать значение
- обновить объект
- выйти из цикла
Python-обработчик выполняет эти команды.
Такой контракт авторы называют natural function interface.
Результаты
На бенчмарке SPSBench с 25 программами:
- корректность осталась на уровне ручной интеграции или выше
- код стал заметно короче
- но время выполнения иногда росло до 4.3 раза
Причина проста - каждое обращение к состоянию может требовать отдельного вызова модели.
Почему это важно
- меньше шаблонного glue-кода
- проще писать сложную логику с участием LLM
- шаг к более тесной интеграции AI и runtime
- фундамент для новых агентных и интерактивных систем
Это не про ускорение.
Это про изменение архитектуры взаимодействия между программой и моделью.
📌 Статья: arxiv.org/abs/2512.14805
#AI #LLM #Python
В MIT предложили подход, при котором языковая модель работает не только с текстом, а напрямую с живым состоянием Python-кода - переменными, объектами в памяти и текущей точкой выполнения.
Подход называется NIGHTJAR.
Главный результат
В экспериментах NIGHTJAR сократил объем кода в среднем на 39.6% без потери корректности.
В чем была проблема
Обычная LLM:
- читает текст
- генерирует текст
- не видит реальные данные программы
Поэтому типичный пайплайн выглядит так:
- данные сериализуются в текст
- отправляются модели
- ответ парсится
- программа вручную обновляется
Много glue-кода, много мест для ошибок.
Что меняет совместное состояние
Shared state полностью меняет модель взаимодействия:
- LLM может читать и писать переменные
- изменять объекты прямо в памяти
- останавливать и пропускать циклы
- работать с текущим состоянием выполнения
Модель не «рассуждает о коде», она с ним взаимодействует.
Как это реализовано
LLM не получает прямой доступ к памяти.
Она отправляет небольшие команды:
- прочитать переменную
- записать значение
- обновить объект
- выйти из цикла
Python-обработчик выполняет эти команды.
Такой контракт авторы называют natural function interface.
Результаты
На бенчмарке SPSBench с 25 программами:
- корректность осталась на уровне ручной интеграции или выше
- код стал заметно короче
- но время выполнения иногда росло до 4.3 раза
Причина проста - каждое обращение к состоянию может требовать отдельного вызова модели.
Почему это важно
- меньше шаблонного glue-кода
- проще писать сложную логику с участием LLM
- шаг к более тесной интеграции AI и runtime
- фундамент для новых агентных и интерактивных систем
Это не про ускорение.
Это про изменение архитектуры взаимодействия между программой и моделью.
📌 Статья: arxiv.org/abs/2512.14805
#AI #LLM #Python
🔥14❤5👍4