🏎️ F1 Race Replay: Визуализация гонок Формулы 1 🏁
Приложение на Python для интерактивного воспроизведения гонок Формулы 1 с графическим интерфейсом. Позволяет отслеживать позиции гонщиков в реальном времени, отображать текущие круги и статус водителей, а также управлять воспроизведением с помощью удобных контролов.
🚀 Основные моменты:
- Визуализация гонок с реальными позициями на треке
- Живое обновление позиций гонщиков и их состояния
- Интерактивные элементы управления воспроизведением
- Подробная информация о телеметрии выбранных гонщиков
- Возможность настройки интерфейса и обработки данных
📌 GitHub: https://github.com/IAmTomShaw/f1-race-replay
#python
@pythonl
Приложение на Python для интерактивного воспроизведения гонок Формулы 1 с графическим интерфейсом. Позволяет отслеживать позиции гонщиков в реальном времени, отображать текущие круги и статус водителей, а также управлять воспроизведением с помощью удобных контролов.
🚀 Основные моменты:
- Визуализация гонок с реальными позициями на треке
- Живое обновление позиций гонщиков и их состояния
- Интерактивные элементы управления воспроизведением
- Подробная информация о телеметрии выбранных гонщиков
- Возможность настройки интерфейса и обработки данных
📌 GitHub: https://github.com/IAmTomShaw/f1-race-replay
#python
@pythonl
❤8👍8🤩3🔥2
Документация создаёт впечатление, что любое целое число просто используется как seed (это “начальная точка” для генератора случайных чисел.).
Но Python перед использованием просто берёт абсолютное значение.
То есть:
➡️ seed(3) и seed(-3) - порождают один и тот же поток случайных чисел.
Это значит, что разные seed не всегда дают разные последовательности -
Python гарантирует только обратное: одинаковый seed → одинаковые числа.
Почему так?
В исходниках CPython есть строка, которая буквально делает:
seed = abs(seed)И знак просто теряется, хотя алгоритм случайных чисел мог бы учитывать его.
🧠 Вывод:
Не используйте небольшие вариации seed (например 5 и -5) как способ получить разные потоки случайностей — это небезопасно.
Если вам нужны независимые RNG — создавайте их явно, а не полагаясь на “умные” seed.
[1] https://docs.python.org/3/library/random.html
[2] https://github.com/python/cpython/blob/main/Modules/_randommodule.c#L321C13-L321C30
@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
👍16❤7🔥3😁2
Пишешь, дебажишь, страдаешь, а оплатить ChatGPT или Cursor всё ещё не можешь без зарубежной карты?
Вот тебе спасательный круг!
🎁 И промокод PYTHONL на скидку, чтобы осталось на кофе и багфиксы.
Хочешь — ChatGPT пишет тебе код,
Хочешь — Cursor чинит его вместо тебя.
Главное, что теперь оплатить их проще простого🧼
➡ Купить подписку
Вот тебе спасательный круг!
С Kupikod всё по-человечески:✅ оплачиваешь рублёвой картой;✅ без VPN и плясок с бубном;✅ низкие цены.
Хочешь — ChatGPT пишет тебе код,
Хочешь — Cursor чинит его вместо тебя.
Главное, что теперь оплатить их проще простого
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3😁3😱3
🖊️ Google Research представила InkSight — систему, которая превращает сфотографанный рукописный текст в настоящие *цифровые рукописные данные*.
Что делает InkSight?
✨ Берёт фото тетрадей, заметок или документов и переводит их в «цифровое перо» - данные, которыми можно редактировать, искать, хранить.
🧠 Под капотом:
• Vision Transformer (ViT) + mT5
• Обучение на чтение и письмо одновременно
• Без специальных планшетов - работает с обычными фото
💡 Возможности:
✔ Обработка слов и целых страниц
✔ Работает с разными языками и стилями письма
✔ Корректно извлекает текст даже на шумном фоне
✔ Результат - редактируемый векторный «ink», а не просто картинка
То есть InkSight — мост между бумажной реальностью и цифровым миром: сделал фото заметок → получил полный цифровой текст, пригодный для поиска и редактирования.
🔗 В репозитории доступны веса модели, датасет и пример кода:
github.com/google-research/inksight
@pythonl
Что делает InkSight?
✨ Берёт фото тетрадей, заметок или документов и переводит их в «цифровое перо» - данные, которыми можно редактировать, искать, хранить.
🧠 Под капотом:
• Vision Transformer (ViT) + mT5
• Обучение на чтение и письмо одновременно
• Без специальных планшетов - работает с обычными фото
💡 Возможности:
✔ Обработка слов и целых страниц
✔ Работает с разными языками и стилями письма
✔ Корректно извлекает текст даже на шумном фоне
✔ Результат - редактируемый векторный «ink», а не просто картинка
То есть InkSight — мост между бумажной реальностью и цифровым миром: сделал фото заметок → получил полный цифровой текст, пригодный для поиска и редактирования.
🔗 В репозитории доступны веса модели, датасет и пример кода:
github.com/google-research/inksight
@pythonl
❤8👍5🔥4
📌 Первые впечатления от системы фоновых задач в Django
В свежем разборе объясняется, как Django наконец получает встроенный инструмент для фоновой обработки заданий без необходимости тянуть сторонние библиотеки вроде Celery.
🔹 Что это такое
Django Background Tasks - новый официально поддерживаемый механизм для:
- отложенного выполнения задач (delayed jobs),
- периодических задач (cron-style),
- асинхронной фоновой обработки в рамках приложения.
🔹 Почему это важно
Раньше разработчикам приходилось выбирать сторонние решения (Celery, RQ, Dramatiq) с дополнительной инфраструктурой (Redis/RabbitMQ и т.п.). Теперь у Django будет собственный, простой и интегрированный способ:
- выполнять задачи после ответа пользователю,
- обрабатывать тяжёлые операции вне запроса,
- запускать периодические задачи без внешних кронов.
🔹 Как это работает
- Вы определяете задачу как обычную Python-функцию.
- Django регистрирует её в очереди внутреннего раннера.
- Фоновый воркер выполняет такие задачи по расписанию или сразу - без внешнего брокера.
🔹 Плюсы по сравнению с альтернативами
✔ встроенная интеграция с ORM и Django-экосистемой
✔ нет необходимости настраивать отдельный брокер
✔ ожидаемая простота и знакомый синтаксис для Django-разработчиков
🔹 О чём ещё в статье
- примеры кода с определением фоновых задач;
- как запускать и мониторить воркеры;
- ограничения и когда всё же стоит использовать более мощные системы.
📌 В сумме: Django делает шаг к тому, чтобы базовая фонвая обработка стала простой и доступной из коробки - это ускоряет разработку и снижает операционную сложность для большинства проектов.
https://roam.be/notes/2025/a-first-look-at-djangos-new-background-tasks/
@pythonl
В свежем разборе объясняется, как Django наконец получает встроенный инструмент для фоновой обработки заданий без необходимости тянуть сторонние библиотеки вроде Celery.
🔹 Что это такое
Django Background Tasks - новый официально поддерживаемый механизм для:
- отложенного выполнения задач (delayed jobs),
- периодических задач (cron-style),
- асинхронной фоновой обработки в рамках приложения.
🔹 Почему это важно
Раньше разработчикам приходилось выбирать сторонние решения (Celery, RQ, Dramatiq) с дополнительной инфраструктурой (Redis/RabbitMQ и т.п.). Теперь у Django будет собственный, простой и интегрированный способ:
- выполнять задачи после ответа пользователю,
- обрабатывать тяжёлые операции вне запроса,
- запускать периодические задачи без внешних кронов.
🔹 Как это работает
- Вы определяете задачу как обычную Python-функцию.
- Django регистрирует её в очереди внутреннего раннера.
- Фоновый воркер выполняет такие задачи по расписанию или сразу - без внешнего брокера.
🔹 Плюсы по сравнению с альтернативами
✔ встроенная интеграция с ORM и Django-экосистемой
✔ нет необходимости настраивать отдельный брокер
✔ ожидаемая простота и знакомый синтаксис для Django-разработчиков
🔹 О чём ещё в статье
- примеры кода с определением фоновых задач;
- как запускать и мониторить воркеры;
- ограничения и когда всё же стоит использовать более мощные системы.
📌 В сумме: Django делает шаг к тому, чтобы базовая фонвая обработка стала простой и доступной из коробки - это ускоряет разработку и снижает операционную сложность для большинства проектов.
https://roam.be/notes/2025/a-first-look-at-djangos-new-background-tasks/
@pythonl
🔥20👍8❤7
Поздравляем, вы на 1 шаг ближе к работе мечты 🥳
Осталось только прочитать этот пост, подписаться на канал и откликнуться на вакансию 😉
Avito Career — место, где Авито делится актуальными вакансиями и стажировками для бэкенд-разработчиков.
Подписывайтесь, чтобы найти ту самую работу ✨
Осталось только прочитать этот пост, подписаться на канал и откликнуться на вакансию 😉
Avito Career — место, где Авито делится актуальными вакансиями и стажировками для бэкенд-разработчиков.
Подписывайтесь, чтобы найти ту самую работу ✨
😁4❤1😢1
🏎️ F1 Race Replay: Визуализация гонок Формулы 1 🏁
Приложение на Python для интерактивного воспроизведения гонок Формулы 1 с графическим интерфейсом. Позволяет отслеживать позиции гонщиков в реальном времени, отображать текущие круги и статус водителей, а также управлять воспроизведением с помощью удобных контролов.
🚀 Основные моменты:
- Визуализация гонок с реальными позициями на треке
- Живое обновление позиций гонщиков и их состояния
- Интерактивные элементы управления воспроизведением
- Подробная информация о телеметрии выбранных гонщиков
- Возможность настройки интерфейса и обработки данных
📌 GitHub: https://github.com/IAmTomShaw/f1-race-replay
#python
Приложение на Python для интерактивного воспроизведения гонок Формулы 1 с графическим интерфейсом. Позволяет отслеживать позиции гонщиков в реальном времени, отображать текущие круги и статус водителей, а также управлять воспроизведением с помощью удобных контролов.
🚀 Основные моменты:
- Визуализация гонок с реальными позициями на треке
- Живое обновление позиций гонщиков и их состояния
- Интерактивные элементы управления воспроизведением
- Подробная информация о телеметрии выбранных гонщиков
- Возможность настройки интерфейса и обработки данных
📌 GitHub: https://github.com/IAmTomShaw/f1-race-replay
#python
😁4❤1
This media is not supported in your browser
VIEW IN TELEGRAM
📝 Как быстро объяснить проект коллеге, если не знаешь, с чего начать
Иногда проще ответить на вопросы новичка, чем структурировать рассказ самому. Но когда сервис большой, а процессов много, легко запутаться: что упомянуть первым, какие детали важны, а что можно оставить на потом.
Голосовой ИИ-помощник ГигаЧат подсказывает, как выстроить объяснение так, чтобы оно было понятным с первого раза.
📌 В итоге один короткий диалог превращается в ясное объяснение, которое не требует пересказывать всё снова. Слушаем!
@pythonl
Иногда проще ответить на вопросы новичка, чем структурировать рассказ самому. Но когда сервис большой, а процессов много, легко запутаться: что упомянуть первым, какие детали важны, а что можно оставить на потом.
Голосовой ИИ-помощник ГигаЧат подсказывает, как выстроить объяснение так, чтобы оно было понятным с первого раза.
📌 В итоге один короткий диалог превращается в ясное объяснение, которое не требует пересказывать всё снова. Слушаем!
@pythonl
❤1