Как вычислить среднее значение, медиану, моду, дисперсию, стандартное отклонение и различные квантильные диапазоны в Pandas?
✔️ DataFrame.mean(): среднее
✔️ DataFrame.median(): медиана
✔️ DataFrame.mode(): мода
✔️ DataFrame.var(): дисперсия
✔️ DataFrame.std(): стандартное отклонение
✔️ DataFrame.quantile(): для расчета квантильного диапазона, используя значение диапазона в качестве параметра
Библиотека собеса по Python
✔️ DataFrame.median(): медиана
✔️ DataFrame.mode(): мода
✔️ DataFrame.var(): дисперсия
✔️ DataFrame.std(): стандартное отклонение
✔️ DataFrame.quantile(): для расчета квантильного диапазона, используя значение диапазона в качестве параметра
Библиотека собеса по Python
👍4
Что такое подгенератор (subgenerator)?
Подгенератор создается с помощью конструкции yield from внутри генератора.
Использование подгенераторов позволяет разбить генератор на несколько частей для упрощения кода и оптимизации памяти. Это полезный инструмент при работе с последовательностями.
Механизм передает значения между генераторами без сохранения всей последовательности в памяти и блокирует основной генератор до полного завершения подгенератора.
Библиотека собеса по Python
Использование подгенераторов позволяет разбить генератор на несколько частей для упрощения кода и оптимизации памяти. Это полезный инструмент при работе с последовательностями.
Механизм передает значения между генераторами без сохранения всей последовательности в памяти и блокирует основной генератор до полного завершения подгенератора.
Библиотека собеса по Python
👍5❤1
Почему @dataclass(eq=True) без frozen по умолчанию не хэшируем?
Потому что при наличии __eq__ и изменяемости нарушается инвариант хэша; Python выставляет __hash__ = None. Нужно либо frozen=True (тогда хэш генерится), либо явно определить __hash__/использовать unsafe_hash=True на свой риск.
Библиотека собеса по Python
Библиотека собеса по Python
👍2
⏳ Время прокачать алгоритмы с 40-процентной скидкой до конца октября
На собеседовании не просят бездумно написать шаблонное решение. Важно понимать, как работают алгоритмы под капотом.
🔹 В курсе ты научишься:
— искать ошибки с помощью редакционного расстояния;
— работать с балансированными деревьями и графами;
— решать задачи с динамическим программированием;
— и многое другое, что пригодится на собеседованиях.
🤔 Решаешь задачи только в тг каналах? Пройди курс и отправляйся на реальные собеседования!
🔗 Подробнее о курсе
На собеседовании не просят бездумно написать шаблонное решение. Важно понимать, как работают алгоритмы под капотом.
🔹 В курсе ты научишься:
— искать ошибки с помощью редакционного расстояния;
— работать с балансированными деревьями и графами;
— решать задачи с динамическим программированием;
— и многое другое, что пригодится на собеседованиях.
🤔 Решаешь задачи только в тг каналах? Пройди курс и отправляйся на реальные собеседования!
🔗 Подробнее о курсе
Что такое категориальные данные и как они представлены в Pandas?
Категориальные данные — это набор предопределенных значений данных в некоторых категориях. Обычно они имеют ограниченный и фиксированный диапазон возможных значений и могут быть как числовыми, так и текстовыми по своей природе. Несколько примеров категориальных данных — пол, образовательная квалификация, группа крови, принадлежность к стране, время наблюдения и т. д. В Pandas категориальные данные часто представлены типом данных Object.
Библиотека собеса по Python
Библиотека собеса по Python
👍1
✍️ Как функционирует метод __new__() в Python?
Метод __new__() отвечает за создание нового экземпляра класса, выделяя для него память. Он вызывается перед методом __init__(), который занимается инициализацией уже созданного экземпляра. Это особенно важно при работе с неизменяемыми типами, такими как str или int, а также в ситуациях, когда необходимо контролировать процесс создания объекта, например, при использовании паттерна Singleton.
Библиотека собеса по Python
Библиотека собеса по Python
👍1
Чем «data»-дескриптор отличается от «non-data», как это влияет на порядок поиска атрибута, и почему @property — это тоже дескриптор?
В Python любой объект с __get__ — дескриптор.
Non-data дескриптор: имеет только __get__. Проигрывает записи в obj.__dict__. @property — именно non-data дескриптор.
Data дескриптор: имеет __set__ и/или __delete__. Имеет приоритет над obj.__dict__, блокируя прямую подмену.
Порядок разрешения атрибутов (__getattribute__): data-descriptor → obj.__dict__ → non-data descriptor/атрибут класса → __getattr__.
Пишите свой data-дескриптор для переиспользуемой логики: валидация, типизация, lazy/кэш, связка с внешними ресурсами.
Библиотека собеса по Python
Non-data дескриптор: имеет только __get__. Проигрывает записи в obj.__dict__.
Data дескриптор: имеет __set__ и/или __delete__. Имеет приоритет над obj.__dict__, блокируя прямую подмену.
Порядок разрешения атрибутов (__getattribute__): data-descriptor → obj.__dict__ → non-data descriptor/атрибут класса → __getattr__.
Пишите свой data-дескриптор для переиспользуемой логики: валидация, типизация, lazy/кэш, связка с внешними ресурсами.
Библиотека собеса по Python
👍1