Machine learning Interview
35.3K subscribers
1.32K photos
97 videos
13 files
885 links
Разбираем вопросы с собеседований по Machine Learning, Data Science, Deep Learning и Нейронным сетям, Python.

Вопросы - @notxxx1


@itchannels_telegram -🔥лучшие it каналы

РКН: clck.ru/3FmwRz
Download Telegram
🚀 Вышли модели Qwen3 в формате MLX!

Теперь можно запускать Qwen3 локально — быстро, эффективно и с разной точностью:
- 4-bit
- 6-bit
- 8-bit
- BF16

🔧 Модели специально оптимизированы под MLX framework — минимальный объём, максимальная производительность, полная совместимость с Apple Silicon.

🧪 Идеально подходит для локального inference и интеграции в MLX‑проекты.

📦 Попробовать:
• Hugging Face: huggingface.co/collections/Qwen/qwen3-67dd247413f0e2e4f653967f
ModelScope: modelscope.cn/collections/Qwen3-9743180bdc6b48

@machinelearning_interview

#Qwen3 #MLX #LLM #AppleSilicon #AI
10👍5🔥4
Forwarded from Machinelearning
🌟MiniMax-M1: открытя reasoning‑LLM с контекстом 1M

MiniMax-M1 — первая в мире open-weight гибридная reasoning‑LLM c 1M контекстом (8× DeepSeek R1) и гибридной архитектурой MoE + lightning attention.
• 456 млрд параметров (45,9 млрд активируются на токен), сверхэффективная генерация — 25% FLOPs DeepSeek R1 на 100K токенов
• Обучение через RL с новым алгоритмом CISPO, решающим реальные задачи от математики до кодинга
• На обучение было потрачено $534K, две версии — 40K/80K “thinking budget”
• Обходит DeepSeek R1 и Qwen3-235B на бенчмарках по математике и кодингу,
• Топ результат на задачах для software engineering и reasoning



Бенчмарки:
AIME 2024: 86.0 (M1-80K) vs 85.7 (Qwen3) vs 79.8 (DeepSeek R1)

SWE-bench Verified: 56.0 vs 34.4 (Qwen3)

OpenAI-MRCR (128k): 73.4 vs 27.7 (Qwen3)

TAU-bench (airline): 62.0 vs 34.7 (Qwen3)

LongBench-v2: 61.5 vs 50.1 (Qwen3)


➡️ Попробовать можно здесь

Hugging Face: https://huggingface.co/collections/MiniMaxAI/minimax-m1-68502ad9634ec0eeac8cf094
GitHub: https://github.com/MiniMax-AI/MiniMax-M1
Tech Report: https://github.com/MiniMax-AI/MiniMax-M1/blob/main/MiniMax_M1_tech_report.pdf


@ai_machinelearning_big_data

#llm #reasoningmodels #minimaxm1
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
8🔥4👍2
Forwarded from Machinelearning
📌Реверс-инженерия GPT-2 методом трассировки цепей Cross-Layer Transcoders.

Goodfire AI, вдохновившись примером Anthropic в интерпретации внутренних процессов Claude, воспроизвели методы трассировки цепей межслойных транскодеров (Cross-Layer Transcoders, CLT) на GPT-2 Small, чтобы проверить их способность раскрывать известные механизмы трансформеров.

Выбор на GPT-2 Small пал не случайно, эта модель небольшая и уже была ранее подвергнута ручному реверс-инжинирингу.

Cross-Layer Transcoders выжимают из модели разреженные признаки, которые объясняют работу MLP-слоев. Визуализируют это через графы атрибуции — это карты влияния признака на выход модели.


Натренировали на 100M токенов из FineWeb, получили ~590K признаков. Точность CLT-реплики модели составила 59%, что близко к оригинальным статьям. Тестировали на задаче сравнения чисел («больше, чем»), идеальном полигоне, где уже известны ключевые механизмы.

Задача "Больше, чем" (ориг. "greater-than") взята из статьи Michael Hanna, она заставляет предсказывать большие числа для второго года в диапазоне дат.


▶️ Главный эксперимент:

Промпт «The war lasted from the year 1711 to 17». CLT построил граф, где признаки с токена «11» (последняя цифра года) активнее всего влияли на предсказание.

Дальше, выделили топ-160 признаков, для каждого построили логит-атрибуции — теплокарты, показывающие, как признак влияет на выходные годы (ZZ) при разных входных (YY).

▶️ Что нашли:

🟢Признаки «больше, чем»: Feature 425104 (слой 8) активируется на больших числах в хронологии (даты, войны). Но его теплокарта продвигает выходы >60, независимо от входа, а вот Feature 461858 работает только для YY=6–14 и продвигает ZZ=10–30.

Похоже, CLT подсветил кучу узкоспециализированных «сравнивателей», а не универсальные нейроны, как в ручных исследованиях.

🟢Сюрпризы: Feature 399423 — вообще не про числа. Он кодирует четность и контраст: активируется на «and» в «pros and cons», а в задаче продвигает четные ZZ при нечетных YY. Абстракция уровня «противоположность» — такого в прошлых работах не видели.

🟢Странности: Feature 402486 вообще саботирует задачу: продвигает малые числа. Или Feature 349410 — работает только для YY=11, хотя ее max-активации показывают числа до 30.

▶️ Выводы:

CLT автоматически находит интерпретируемые признаки, даже такие неочевидные, как абстрактная четность. Но их «разреженный» мир выглядит иначе, чем ручная трассировка цепей: тут больше узких признаков-«спецов» (Feature 461858 для диапазона 10–30) и меньше универсальных механизмов.

Возможно, дело в методе: CLT смотрит изолированные вклады фич, а в полной модели они взаимодействуют.

В общем, эксперименты с CLT показал, что под капотом языковых моделей не только четкие «сравниватели чисел», но и куча скрытых паттернов вроде детекторов контраста или любителей чисел, кратных 5. И да, полуавтономный анализ иногда видит то, что люди упускают.

🔜 Читать полную статью


@ai_machinelearning_big_data

#AI #ML #LLM #Research #CLT
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
8🔥4🥰1🤔1