Machine learning Interview
34K subscribers
1.4K photos
109 videos
13 files
962 links
Разбираем вопросы с собеседований по Machine Learning, Data Science, Deep Learning и Нейронным сетям, Python.

Вопросы - @notxxx1


@itchannels_telegram -🔥лучшие it каналы

РКН: clck.ru/3FmwRz
Download Telegram
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
✔️ OpenAI расширяет возможности ChatGPT Pro.

OpenAI запустила Search Connectors для ChatGPT Pro и Team, функцию, которая напрямую связывает облачные хранилища (Google Drive, Dropbox и OneDrive) с интерфейсом чата. Теперь пользователи могут искать, анализировать и обобщать документы, не загружая их вручную.

Лимит файлов на проект для Pro-подписчиков вырос с 20 до 40, а поддержка охватывает 12 сервисов, включая GitHub, Gmail и Outlook. Пока новинка доступна за пределами ЕС, Великобритании и Швейцарии.
Open AI в сети Х

✔️ Google открыла доступ к Imagen 4.

Imagen 4, усовершенствованные модели генерации изображений по текстовым запросам, стали доступны в двух версиях: базовая Imagen 4 (4 цента за изображение) для повседневных задач и Imagen 4 Ultra (6 центов) с повышенной детализацией и точностью исполнения инструкций. Обе модели доступны в Gemini API для платных пользователей, а также в ограниченном бесплатном тестировании через Google AI Studio.

Разработчики обещают улучшенное отображение текста на картинках и расширение тарифных планов в ближайшие недели. Все сгенерированные изображения получат скрытый цифровой водяной знак SynthID.
developers.googleblog.com

✔️ HPE и NVIDIA представили новую линейку решений для корпоративного ИИ.

HPE и NVIDIA анонсировали совместные решения для создания «фабрик искусственного интеллекта» на базе модульной инфраструктуры. В линейку вошли серверы HPE ProLiant DL380a Gen12 с GPU NVIDIA RTX PRO 6000 Blackwell, которые предлагают универсальную платформу для генеративного и промышленного ИИ.

Также был представлен HPE Private Cloud AI — готовое решение для быстрого внедрения ИИ, совместимое с фреймворком NVIDIA Enterprise AI Factory. Для финансового сектора планируется тестирование агентного ИИ с Accenture, а 26 новых партнеров расширят экосистему HPE, добавив 70 преднастроенных сценариев: от детекции мошенничества до кибербезопасности. Решения доступны для заказа, а система HPE Compute XD690 с GPU Blackwell Ultra начнет отгружаться в октябре.
blogs.nvidia.com

✔️ Google DeepMind представила AlphaGenome.

AlphaGenome — нейросеть, которая предсказывает, как мутации в ДНК влияют на регуляцию генов. Модель обрабатывает участки длиной до миллиона пар оснований, анализируя их на уровне отдельных «букв» и оценивая тысячи молекулярных свойств: активность генов, сплайсинг РНК, доступность участков ДНК.

AlphaGenome сочетает сверточные слои для поиска коротких паттернов и трансформеры для анализа длинных последовательностей. Одна из ключевых особенностей - точное моделирование сплайс-сайтов, важное для изучения редких заболеваний.

Модель превзошла аналоги в 22 из 24 тестов, предсказывая как структуру ДНК, так и эффекты вариантов. Доступ к AlphaGenome открыт через API для некоммерческих проектов.
deepmind.google

✔️ LongWriter-Zero: модель, которая пишет длинные тексты благодаря RL.

Группа исследователей из Сингапура и Китая представила LongWriter-Zero, модель, которая генерирует тексты длиной более 10 тысяч слов, обучаясь только через RL, без использования синтетических данных. Модель опирается на три специализированных «наградных» алгоритма, оценивающих структуру, качество и длину текста, а также уникальный метод «усреднения преимущества», который балансирует приоритеты между ними.

LongWriter-Zero использует «промты-размышления»: перед написанием модель планирует структуру текста, улучшая его связность. Бенчмарки показали рост эффективности с 700 до 1200 поинтов Elo. Однако у модели есть слабые места: она склонна к повторам и переиспользованию слов, которые система поощряет в процессе обучения.
Модель и датасет доступны на Hugging Face.
huggingface.co

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
6👍5🥰4
Forwarded from Machinelearning
🧠 Как машинное обучение помогло заглянуть за пределы Стандартной модели в физике

На одной из самых престижных премий мира Breakthrough Prize 2025 отметили участников эксперимента LHCb на Большом адронном коллайдере — в их числе выпускники Школы анализа данных (ШАД) Яндекса и ученые НИУ ВШЭ. Они применили ML, чтобы улучшить анализ данных с коллайдера и сделать возможным открытие тетракварков и пентакварков — нестабильных частиц, предсказанных теорией.

🟠Роль машинного обучения

Для анализа данных эксперимента использовались CatBoost, генеративные нейросети и алгоритмы интеллектуального отбора. Они позволили значительно повысить точность реконструкции траекторий частиц и отбор редких событий среди фона. Эффективность обработки выросла, особенно это заметно при работе с большими потоками коллайдерных данных.

🟠Ключевые открытия

Тетракварки и пентакварки — новые экзотические частицы, состоящие из 4 и 5 кварков (в отличие от привычных протонов и нейтронов). Их открытие подтверждает Стандартную модель, но не переворачивает физику.

CP-нарушение — обнаружена асимметрия между материей и антиматерией, но ее масштаб недостаточен для объяснения дисбаланса во Вселенной.

🟠Главный вопрос: почему материи больше, чем антиматерии?

Ученые подтвердили CP-нарушение, но его недостаточно для полного объяснения асимметрии. Требуется выполнение трёх условий Сахарова, два из которых пока не обнаружены.

🟠Что дальше

Новые эксперименты в Дубне (BM@N, MPD, SPD) и возможное строительство коллайдера в Китае.

Поиск «новой физики» за пределами Стандартной модели.

Полное интервью

@ai_machinelearning_big_data

#ML #AI #CatBoost #Physics #LHCb #ШАД #ВШЭ #BreakthroughPrize
Please open Telegram to view this post
VIEW IN TELEGRAM
14👍2🤣1