T5Gemma 2 - новое поколение энкодер-декодерных моделей от Google
Google представила T5Gemma 2 - энкодер-декодерную архитектуру, построенную на базе идей и ряда улучшений Gemma 3. Это не просто апдейт, а полноценный шаг вперед для задач генерации, перевода, суммаризации и мультимодального понимания.
T5Gemma 2 объединяет сильные стороны классического подхода T5 (encoder-decoder) с архитектурными улучшениями Gemma нового поколения, делая модель более эффективной, масштабируемой и универсальной.
Основные особенности
- Энкодер-декодерная архитектура нового поколения
- Общие эмбеддинги для энкодера и декодера, что снижает размер модели
- Объединенное self- и cross-attention в декодере для более эффективных вычислений
- Поддержка длинного контекста до 128 000 токенов
- Мультимодальность - работа с текстом и изображениями
- Многоязычная поддержка более 140 языков
Размеры моделей
T5Gemma 2 доступна в нескольких конфигурациях:
- 270M + 270M параметров
- 1B + 1B параметров
- 4B + 4B параметров
Такие размеры позволяют использовать модель как в исследованиях, так и в продакшене, включая on-device сценарии.
Модель демонстрирует отличное понимание контекста, более стабильную генерацию и высокое качество работы с длинными последовательностями. Особенно хорошо проявляет себя в задачах суммаризации, QA, перевода и мультимодальных сценариях.
Где это полезно
- Суммаризация документов
- Машинный перевод
- Поиск и RAG-системы
- Мультимодальные ассистенты
- Обработка длинных текстов без агрессивного чанкинга
T5Gemma 2 показывает, что encoder-decoder подход по-прежнему актуален и может конкурировать с decoder-only моделями, особенно в задачах понимания и структурированной генерации.
https://blog.google/technology/developers/t5gemma-2/
Google представила T5Gemma 2 - энкодер-декодерную архитектуру, построенную на базе идей и ряда улучшений Gemma 3. Это не просто апдейт, а полноценный шаг вперед для задач генерации, перевода, суммаризации и мультимодального понимания.
T5Gemma 2 объединяет сильные стороны классического подхода T5 (encoder-decoder) с архитектурными улучшениями Gemma нового поколения, делая модель более эффективной, масштабируемой и универсальной.
Основные особенности
- Энкодер-декодерная архитектура нового поколения
- Общие эмбеддинги для энкодера и декодера, что снижает размер модели
- Объединенное self- и cross-attention в декодере для более эффективных вычислений
- Поддержка длинного контекста до 128 000 токенов
- Мультимодальность - работа с текстом и изображениями
- Многоязычная поддержка более 140 языков
Размеры моделей
T5Gemma 2 доступна в нескольких конфигурациях:
- 270M + 270M параметров
- 1B + 1B параметров
- 4B + 4B параметров
Такие размеры позволяют использовать модель как в исследованиях, так и в продакшене, включая on-device сценарии.
Модель демонстрирует отличное понимание контекста, более стабильную генерацию и высокое качество работы с длинными последовательностями. Особенно хорошо проявляет себя в задачах суммаризации, QA, перевода и мультимодальных сценариях.
Где это полезно
- Суммаризация документов
- Машинный перевод
- Поиск и RAG-системы
- Мультимодальные ассистенты
- Обработка длинных текстов без агрессивного чанкинга
T5Gemma 2 показывает, что encoder-decoder подход по-прежнему актуален и может конкурировать с decoder-only моделями, особенно в задачах понимания и структурированной генерации.
https://blog.google/technology/developers/t5gemma-2/
❤9👍4🔥3