🧠 LIMIT: Исследование пределов извлечения на основе эмбеддингов
Репозиторий содержит набор данных LIMIT, созданный для проверки моделей эмбеддингов на теоретических принципах. Исследование показывает, что даже современные модели не могут вернуть определенные документы, подчеркивая ограничения текущего подхода с использованием одно-векторных эмбеддингов.
🚀Основные моменты:
- Набор данных для тестирования моделей эмбеддингов.
- Включает 50k документов и 1000 запросов.
- Подчеркивает теоретические ограничения извлечения информации.
- Код для генерации данных и экспериментов доступен в репозитории.
📌 GitHub: https://github.com/google-deepmind/limit
#python
Репозиторий содержит набор данных LIMIT, созданный для проверки моделей эмбеддингов на теоретических принципах. Исследование показывает, что даже современные модели не могут вернуть определенные документы, подчеркивая ограничения текущего подхода с использованием одно-векторных эмбеддингов.
🚀Основные моменты:
- Набор данных для тестирования моделей эмбеддингов.
- Включает 50k документов и 1000 запросов.
- Подчеркивает теоретические ограничения извлечения информации.
- Код для генерации данных и экспериментов доступен в репозитории.
📌 GitHub: https://github.com/google-deepmind/limit
#python
👍9❤8🥰1