Machine learning Interview
33.3K subscribers
1.46K photos
111 videos
13 files
1K links
Разбираем вопросы с собеседований по Machine Learning, Data Science, Deep Learning и Нейронным сетям, Python.

Вопросы - @notxxx1


@itchannels_telegram -🔥лучшие it каналы

РКН: clck.ru/3FmwRz
Download Telegram
🆕 PDF Arranger — лёгкий и удобный инструмент для работы с PDF.

Возможности:
- Объединение и разделение файлов
- Поворот и обрезка страниц
- Перестановка и удаление страниц
- Интуитивный drag-and-drop интерфейс

💻 Доступен для Linux, Windows (включая портативную версию) и BSD.
Полностью опенсорс (GPL-3.0).

Идеален, если нужно быстро подготовить PDF к печати или презентации — без сложных настроек.

📌 GitHub

#PDF #opensource #Linux #devtools

@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
11🔥4👍3
Forwarded from Machinelearning
🐳 А вот и обновленная DeepSeek-V3.1-Terminus

Она даёт более стабильные и полные результаты на тестах по сравнению с предыдущей версией.

Доступна в приложении и в веб-версии и через API.

🔗 Открытые веса: https://huggingface.co/deepseek-ai/DeepSeek-V3.1-Terminus

@ai_machinelearning_big_data


#DeepSeek #opensource #llm
9🔥4🥰4
Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
💡 RND1 - новая экспериментальная модель с 30 миллиардами параметров, построенная по архитектуре Sparse Mixture-of-Experts, где активно 3 миллиарда параметров.

Она была преобразована из предварительно обученной авторегрессионной модели (Qwen3-30B-A3B) и затем дополнительно обучена на 500 миллиардах токенов, чтобы полностью поменять поведениие диффузионной модели.

Обычные модели (AR, автогрессионные) пишут текст слово за словом, а RND1 создаёт всё предложение сразу и потом пошагово уточняет его, как будто “проявляет” текст из шума.

Это - Diffusion Language Model (DLM), аналог диффузионных моделей, которые рисуют картинки, только здесь она “рисует” слова.

🔄 Как её сделали

Команда Radical Numerics придумала, как превратить готовую модель в диффузионную без обучения с нуля.

Они просто поменяли тип внимания и дообучили модель на новой задаче.

Этот метод называется AR-to-Diffusion Conversion (A2D) - то есть конверсия из автогрессионной модели в диффузионную.

Как это происходит:
1. Берут сильную GPT-подобную модель.
2. Меняют механизм внимания — теперь модель видит весь контекст сразу.
3. Продолжают обучение по диффузионной задаче.
4. Используют разные скорости обучения для разных частей сети, чтобы модель не забыла старое, но научилась новому способу мышления.

⚙️ Что под капотом

Mixture-of-Experts (MoE) - у модели 30 млрд параметров, но реально работают только 3 млрд за раз. Это делает её мощной, но экономной.

Непрерывное дообучение - старые знания не стираются, а “встраиваются” в новый режим.

Огромные батчи - модель учится на больших партиях данных, чтобы стабилизировать обучение, ведь она не обрабатывает все токены сразу.

✔️ Почему это интересно

- Параллельная генерация - текст создаётся быстрее, без пошаговой задержки.
- Меньше затрат - активных параметров всего 3 млрд, при этом качество как у больших GPT.
- Новая архитектура - открывает дорогу гибридным моделям, сочетающим плюсы AR и DLM.
- Полностью открытый код и веса - можно исследовать, изменять, запускать самому.
- Первый серьёзный шаг к самосовершенствующемуся ИИ- модель может не только обучаться, но и помогать в проектировании следующей версии.

Это реально интересный метод, RND1 показывает, что ИИ можно не просто обучать, а перестраивать - менять его саму логику мышления без начала “с нуля”.

Похоже, это может стать фундаментом для систем Recursive Self-Improvement (RSI), когда ИИ способен создавать и улучшать самого себя.

🟠Blog: https://radicalnumerics.ai/blog/rnd1

🟠Code: https://github.com/RadicalNumerics/RND1

🟠Report: https://radicalnumerics.ai/assets/rnd1_report.pdf

🟠Веса: https://huggingface.co/radicalnumerics/RND1-Base-0910

@ai_machinelearning_big_data


#RND1 #RadicalNumerics #AI #DLM #DiffusionModel #MoE #OpenSource
Please open Telegram to view this post
VIEW IN TELEGRAM
15🔥6👍5🤝2
Forwarded from Machinelearning
⚡️ Omni-Embed-Nemotron - новая единая модель от NVIDIA для поиска по тексту, изображениям, аудио и видео

Модель обучена на разнообразных мультимодальных данных и может объединять разные типы входных сигналов в общее векторное представление.

- Поддержка всех типов данных: текст, изображение, аудио, видео.
- Основана на архитектуре Qwen Omni (Thinker-модуль, без генерации текста).
- Контекст - до 32 768 токенов, размер embedding — 2048.
- Оптимизирована под GPU, поддерживает FlashAttention 2.

Это делает её идеальной для:
- кросс-модального поиска (поиск текста по видео или изображению);
- улучшения RAG-проектов;
- систем мультимодального понимания контента.

Просто, быстро и эффективно - всё в одном открытом решении.

🌐 Открытая модель: https://huggingface.co/nvidia/omni-embed-nemotron-3b

@ai_machinelearning_big_data


#crossmodal #retrieval #openAI #NVIDIA #OmniEmbed #multimodal #AIModels #OpenSource #Search #UnifiedEmbedding
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
14👍4🔥3🥰3
Forwarded from Machinelearning
🖥 NVIDIA представила новое открытое семейство моделей Nemotron 3

✔️ Nemotron 3 Nano - это универсальная модель для рассуждений и чата, ориентированная на локальный запуск.

Ключевые характеристики:
- MoE-архитектура: 30B параметров всего, ~3.5B активных
- Контекст до 1 миллиона токенов
- Гибридная архитектура:
- 23 слоя Mamba-2 + MoE
- 6 attention-слоёв
- Баланс между скоростью и качеством рассуждений

Требования:
- необходимо около 24 ГБ видеопамяти для локального запуска

Модель хорошо подходит для длинных диалогов, анализа документов и reasoning-задач

Интересный пример того, как MoE и Mamba начинают реально снижать требования к железу, сохраняя масштаб контекста и качество.

✔️ Nemotron 3 Super и Nemotron 3 Ultra значительно превосходят Nano по масштабу - примерно в 4 раза и 16 раз соответственно. Но ключевой момент здесь не просто в размере моделей, а в том, как NVIDIA удалось увеличить мощность без пропорционального роста стоимости инференса.

Для обучения Super и Ultra используется NVFP4 и новая архитектура Latent Mixture of Experts. Она позволяет задействовать в четыре раза больше экспертов при той же стоимости инференса. По сути, модель становится «умнее» за счёт более гибкого выбора экспертов, а не за счёт постоянной активации всех параметров.

Дополнительно применяется Multi-Token Prediction, что ускоряет обучение и улучшает качество рассуждений на длинных последовательностях. Это особенно важно для agentic и multi-agent сценариев, где модели работают с длинным контекстом и сложными цепочками решений.

NVIDIA публикует не только веса, но и данные для предобучения и постобучения, а также технические детали, которые объясняют, почему эти модели одновременно быстрые и сильные.

Такой уровень открытости - редкость для моделей этого масштаба и хороший сигнал для индустрии.

🟡Release: https://developer.nvidia.com/blog/inside-nvidia-nemotron-3-techniques-tools-and-data-that-make-it-efficient-and-accurate/
🟡Guide: https://docs.unsloth.ai/models/nemotron-3
🟡GGUF: https://huggingface.co/unsloth/Nemotron-3-Nano-30B-A3B-GGUF
🟡lmstudio: https://lmstudio.ai/models/nemotron-3

@ai_machinelearning_big_data


#AI #LLM #NVIDIA #Nemotron3 #OpenSource #MachineLearning
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥96👍5
🎉 MiMo-V2-Flash - бесплатный API доступен на ModelScope

Первый крупный релиз Xiaomi после прихода Fuli Luo — и сразу ставка на реальные agentic-сценарии, а не «лабораторные» демо.

MiMo-V2-Flash - открытая высокопроизводительная MoE-модель:
- 309B параметров всего / 15B активных
- Контекст 256K токенов
- 150+ токенов в секунду благодаря нативному Multi-Token Prediction

🔥 Ключевые преимущества для разработчиков:
- Гибридное внимание (5:1 SWA + Global)
→ в 6 раз меньше KV-кэша без потери длинного контекста
- 73.4% на SWE-Bench Verified — новый SOTA среди open-source моделей
- Качество рассуждений на уровне DeepSeek-V3.2, но заметно выше скорость в реальных задачах

API-ready
Отлично подходит для:
- агентных систем
- длинных reasoning-пайплайнов
- быстрых и отзывчивых AI-ассистентов

Модель доступна на ModelScope:
https://modelscope.cn/models/XiaomiMiMo/MiMo-V2-Flash

#AI #LLM #MoE #OpenSource #AgenticAI #Xiaomi #ModelScope
11👍5🥰2🤣2