Media is too big
VIEW IN TELEGRAM
OpenAI опубликовали исследование о причинах галлюцинации LLM.
Галлюцинации - это не мистический сбой в сознании ИИ, а вполне предсказуемый побочный эффект его обучения.
Представьте, что перед моделью стоит задача бинарной классификации - определить, является ли предложенное утверждение корректным или нет. Математическая выкладка в исследовании проста: уровень ошибок генерации как минимум в 2 раза превышает уровень ошибок классификации. Если модель не способна надежно отличить факт от вымысла, она неизбежно будет этот вымысел генерировать.
Даже на идеально чистых данных статистические цели обучения подталкивают модель к генерации ошибок. Особенно это касается фактов, которые редко встречаются в обучающей выборке.
В работе вводится понятие singleton rate — доля фактов, которые появились в данных лишь один раз. Теоретический расклад показывает, что уровень галлюцинаций модели будет как минимум равен этой доле.
Проще говоря, если 20% фактов о днях рождения в датасете встретились единожды, модель будет выдумывать дни рождения как минимум в 20% случаев.
Модель DeepSeek-V3, на просьбу назвать день рождения одного из авторов статьи, трижды выдала неверные даты: 03-07, 15-06 и 01-01. Ни одна из них не была даже близка к правильной (осенью).
В другом тесте, где нужно было сосчитать количество букв D в слове DEEPSEEK, та же DeepSeek-V3 выдавала 2 или 3, а модели компании Марка Цукерберга и Claude 3.7 Sonnet доходили до 6 и 7.
При этом базовые модели после претрейна часто показывают отличную калибровку. Например, у предобученной GPT-4 ожидаемая ошибка калибровки составляла всего 0.007, что говорит о высокой статистической адекватности ее предсказаний.
Ответ на этот вопрос - в системе оценки. Большинство современных бенчмарков поощряют угадывание. Модели, по сути, постоянно находятся в режиме сдачи экзамена, где за правильный ответ дают 1 балл, а за пустой бланк или ответ я не знаю - 0. В такой системе оптимальная стратегия при неуверенности - только угадать. Любой шанс на правильный ответ лучше, чем гарантированный ноль.
Эту гипотезу подтвердили анализом популярных оценочных наборов.
В GPQA, MMLU-Pro, Omni-MATH, SWE-bench и HLE используется строго бинарная система оценки (правильно/неправильно). Возможности получить частичный балл за честное признание в незнании там просто нет. Из 10 рассмотренных в исследовании популярных бенчмарков только один, WildBench, присуждает частичные баллы за ответы формата я не знаю. Остальные же фактически наказывают модель за отказ галлюцинировать, создавая эпидемию штрафов за неуверенность и поощряя ее выдавать правдоподобную ложь.
OpenAI предлагает встраивать явные целевые уровни уверенности в рубрики, вводить поведенческую калибровку и оценивать модели по секциям с разными порогами уверенности.
Еще рекомендуют включают мониторинг singleton-rate на корпусе, измерение вероятности важных ответов, комбинирование RAG с верификацией фактов и изменение лидербордов чтобы ответы я не знаю не штрафовались автоматически.
#AI #ML #LLM #Research #OpenAI
Please open Telegram to view this post
VIEW IN TELEGRAM
❤17👍13🔥6
🚀 Unsloth показал, как динамическая квантизация (Dynamic GGUFs) может радикально ускорить и облегчить работу LLM, не теряя качество.
В чём суть
Обычные методы квантизации уменьшают разрядность весов модели одинаково для всех слоёв.
Unsloth пошёл дальше: каждому слою подбирается своё число бит.
- Ключевые слои → 6–8 бит (чтобы сохранить точность).
- Второстепенные → 1–3 бита (для максимального сжатия).
Результаты, которых удалось добиться:
- 671B DeepSeek-V3.1: сжатие модели с 671GB до 192GB (–75%).
- 1-бит версия уже обгоняет GPT-4.1 и GPT-4.5 в «no-thinking» задачах.
- 3-бит версия превосходит Claude-4-Opus в «thinking» задачах.
- 5-бит версия догоняет и стабильно держит уровень SOTA.
🟢 Почему это интересно:
- Сжатие → модели становятся доступнее для запуска на меньших GPU.
- Качество не падает, а иногда даже растёт за счёт умного распределения битности.
- Тесты на Aider Polyglot benchmark показывают лучшие результаты среди существующих quant-моделей.
🟢 Итог
Dynamic GGUF от Unsloth — это не просто ещё один способ «урезать» модель, а технология, которая делает триллионные LLM компактными, быстрыми и при этом сверхточными.
⭐Пост: https://docs.unsloth.ai/basics/unsloth-dynamic-ggufs-on-aider-polyglot
#Unsloth #LLM #Quantization #AI #AiderPolyglot
В чём суть
Обычные методы квантизации уменьшают разрядность весов модели одинаково для всех слоёв.
Unsloth пошёл дальше: каждому слою подбирается своё число бит.
- Ключевые слои → 6–8 бит (чтобы сохранить точность).
- Второстепенные → 1–3 бита (для максимального сжатия).
Результаты, которых удалось добиться:
- 671B DeepSeek-V3.1: сжатие модели с 671GB до 192GB (–75%).
- 1-бит версия уже обгоняет GPT-4.1 и GPT-4.5 в «no-thinking» задачах.
- 3-бит версия превосходит Claude-4-Opus в «thinking» задачах.
- 5-бит версия догоняет и стабильно держит уровень SOTA.
- Сжатие → модели становятся доступнее для запуска на меньших GPU.
- Качество не падает, а иногда даже растёт за счёт умного распределения битности.
- Тесты на Aider Polyglot benchmark показывают лучшие результаты среди существующих quant-моделей.
Dynamic GGUF от Unsloth — это не просто ещё один способ «урезать» модель, а технология, которая делает триллионные LLM компактными, быстрыми и при этом сверхточными.
⭐Пост: https://docs.unsloth.ai/basics/unsloth-dynamic-ggufs-on-aider-polyglot
#Unsloth #LLM #Quantization #AI #AiderPolyglot
Please open Telegram to view this post
VIEW IN TELEGRAM
❤16👍5✍1
Ответы пишите в комменариях👇
🤔 Проблема
Катастрофическое забывание возникает, когда модель во время дообучения на новых данных теряет уже выученные знания.
Ещё хуже ситуация с коллапсом модели — когда в датасет начинают попадать тексты, сгенерированные самой LLM: это искажает данные, стирает редкие примеры и усиливает ошибки.
✅ Подходы на практике:
1️⃣ LoRA / параметро-эффективное дообучение:
- Обновляются не все веса, а только адаптеры.
- Это снижает риск забывания базовых знаний, сохраняя при этом гибкость для дообучения.
2️⃣Dynamic replay / rehearsal (динамическое повторное смешивание)
- К кастомному датасету подмешивают данные из предобучения.
- Обычно берут в 2–3 раза больше примеров из базового корпуса.
- Так сохраняется «фон» общих знаний модели.
3️⃣ Dataset mixing (смешивание датасетов)
- Не дают модели «зарыться» в узкий домен.
- Сочетание специализированных и базовых данных удерживает баланс.
4️⃣ Variation across epochs (вариативность между эпохами)
- На каждой эпохе берут новые сэмплы из предобученного корпуса.
- Это повышает разнообразие и снижает риск переобучения к конкретному подмножеству.
📌 Как ответить на собеседовании
«Чтобы избежать забывания, используют LoRA (параметро-эффективное дообучение), динамический replay с базовыми данными (в пропорции 1:2 или 1:3), а также варьируют сэмплы из pretrain-корпуса между эпохами. Это сохраняет старые знания и даёт гибкость для новых».
@machinelearning_interview
#AI #LLM #MachineLearning #Forgetting #FineTuning
Please open Telegram to view this post
VIEW IN TELEGRAM
👍13🔥6❤3😘3💯1
Forwarded from Machinelearning
🐳 А вот и обновленная DeepSeek-V3.1-Terminus
Она даёт более стабильные и полные результаты на тестах по сравнению с предыдущей версией.
Доступна в приложении и в веб-версии и через API.
🔗 Открытые веса: https://huggingface.co/deepseek-ai/DeepSeek-V3.1-Terminus
@ai_machinelearning_big_data
#DeepSeek #opensource #llm
Она даёт более стабильные и полные результаты на тестах по сравнению с предыдущей версией.
Доступна в приложении и в веб-версии и через API.
🔗 Открытые веса: https://huggingface.co/deepseek-ai/DeepSeek-V3.1-Terminus
@ai_machinelearning_big_data
#DeepSeek #opensource #llm
❤8🔥4🥰4
Forwarded from Machinelearning
🚀 DeepSeek-V3.2-Exp - вышла новая экспериментальная версия
⚡ Главное:
- Основана на V3.1-Terminus
- Новый механизм Sparse Attention (DSA) → быстрее и дешевле работа с длинными контекстами
- Качество почти без потерь, производительность как у V3.1
- 💰 API подешевел более чем на 50%
📊 V3.1 пока ещё будет доступна до 15 октября 2025.
🔗 Hugging Face: https://huggingface.co/deepseek-ai/DeepSeek-V3.2-Exp)
🔗 Tech Report: https://github.com/deepseek-ai/DeepSeek-V3.2-Exp/blob/main/DeepSeek_V3_2.pdf)
🔗Github: https://github.com/deepseek-ai/DeepSeek-V3.2-Exp/blob/main/DeepSeek_V3_2.pdf
@ai_machinelearning_big_data
#DeepSeek #AI #V32 #SparseAttention #LLM
⚡ Главное:
- Основана на V3.1-Terminus
- Новый механизм Sparse Attention (DSA) → быстрее и дешевле работа с длинными контекстами
- Качество почти без потерь, производительность как у V3.1
- 💰 API подешевел более чем на 50%
📊 V3.1 пока ещё будет доступна до 15 октября 2025.
🔗 Hugging Face: https://huggingface.co/deepseek-ai/DeepSeek-V3.2-Exp)
🔗 Tech Report: https://github.com/deepseek-ai/DeepSeek-V3.2-Exp/blob/main/DeepSeek_V3_2.pdf)
🔗Github: https://github.com/deepseek-ai/DeepSeek-V3.2-Exp/blob/main/DeepSeek_V3_2.pdf
@ai_machinelearning_big_data
#DeepSeek #AI #V32 #SparseAttention #LLM
❤2👍2🤔2