Что такое доверительный интервал?
Доверительный интервал (confidence interval) — это интервал, который с заданной вероятностью (или надёжностью) содержит истинное значение оцениваемого параметра.
Иными словами, доверительный интервал позволяет сказать: если бы мы многократно брали выборки и рассчитывали для каждой интервал, то в заданном проценте случаев (например, 95%) этот интервал содержал бы истинное значение параметра.
▪️Доверительный интервал говорит о параметре (например, среднее или доля), а не о самих наблюдениях.
Пример: доверительный интервал для среднего веса населения указывает диапазон значений, в котором, с вероятностью 95%, лежит средний вес всей популяции, а не вес отдельных людей.
#статистика
Доверительный интервал (confidence interval) — это интервал, который с заданной вероятностью (или надёжностью) содержит истинное значение оцениваемого параметра.
Иными словами, доверительный интервал позволяет сказать: если бы мы многократно брали выборки и рассчитывали для каждой интервал, то в заданном проценте случаев (например, 95%) этот интервал содержал бы истинное значение параметра.
▪️Доверительный интервал говорит о параметре (например, среднее или доля), а не о самих наблюдениях.
Пример: доверительный интервал для среднего веса населения указывает диапазон значений, в котором, с вероятностью 95%, лежит средний вес всей популяции, а не вес отдельных людей.
#статистика
❤5
Как сделать модель более устойчивой к выбросам?
Здесь можно подойти с двух сторон: преобразовать данные или особым образом построить модель.
Выбросы обычно определяются по отношению к распределению данных. Их можно удалить на этапе предварительной обработки, используя статистические методы. Самый простой подход — считать аномальными значения, которые находятся слишком далеко от среднего выборки. Иногда может помочь преобразование данных (например, логарифмическое преобразование).
Ещё один способ уменьшения влияния выбросов — использование средней абсолютной ошибки вместо среднеквадратичной ошибки. Что касается моделей, то устойчивыми к выбросам можно считать деревья решений.
#машинное_обучение
#статистика
Здесь можно подойти с двух сторон: преобразовать данные или особым образом построить модель.
Выбросы обычно определяются по отношению к распределению данных. Их можно удалить на этапе предварительной обработки, используя статистические методы. Самый простой подход — считать аномальными значения, которые находятся слишком далеко от среднего выборки. Иногда может помочь преобразование данных (например, логарифмическое преобразование).
Ещё один способ уменьшения влияния выбросов — использование средней абсолютной ошибки вместо среднеквадратичной ошибки. Что касается моделей, то устойчивыми к выбросам можно считать деревья решений.
#машинное_обучение
#статистика