Почему комбинация методов калибровки (например, Temperature Scaling + Isotonic Regression) может ухудшить итоговую калибровку?
Anonymous Quiz
5%
Потому что методы несовместимы по математике
47%
Потому что вторая калибровка заново масштабирует логиты
30%
Потому что каждая трансформация может переобучиться на ограниченной валидационной выборке
18%
Потому что избыточная гладкость ухудшает дискретизацию вероятностей
📊 Задача с собеседования
Если не понимаете с какой стороны подступиться к задаче, то пора подтянуть математику.
🎓 Именно этому посвящен курс экспресс-курс «Математика для Data Science» от Proglib Academy:
— работа с векторами и матрицами;
— линейная регрессия и метод наименьших квадратов;
— вероятности, распределения, статистика;
— и многое другое.
⏳ Старт: 4 декабря
🔥 Скидка: 40% до конца ноября
👉 Подключиться к курсу
Имеются данные о продажах за последние 12 месяцев. Требуется оценить наличие линейной зависимости между количеством заключённых сделок и объёмом выручки, а также построить прогноз выручки при достижении 150 сделок.
Если не понимаете с какой стороны подступиться к задаче, то пора подтянуть математику.
🎓 Именно этому посвящен курс экспресс-курс «Математика для Data Science» от Proglib Academy:
— работа с векторами и матрицами;
— линейная регрессия и метод наименьших квадратов;
— вероятности, распределения, статистика;
— и многое другое.
⏳ Старт: 4 декабря
🔥 Скидка: 40% до конца ноября
👉 Подключиться к курсу
Почему добавление слишком большого momentum-параметра β в стохастическом градиенте может ухудшить обучение при очень шумных данных?
Anonymous Quiz
65%
Потому что накопленные скорости усиливают шум в направлении обновлений
11%
Потому что momentum уменьшает размер шага
16%
Потому что β влияет на регуляризацию
8%
Потому что градиенты перестают зависеть от потерь
❤1
Почему средняя AUC по схемам One-vs-One может быть выше, чем One-vs-Rest, даже при тех же данных?
Anonymous Quiz
14%
One-vs-One использует меньше данных
41%
One-vs-One игнорирует редкие классы, что делает задачу легче
4%
One-vs-One всегда лучше по теории
42%
One-vs-Rest вычисляет AUC только по одному классу
Почему дрейф данных может улучшить общую метрику, но ухудшить fairness?
Anonymous Quiz
5%
Fairness всегда ухудшается
3%
Новые данные всегда проще
90%
Улучшение для majority класса может “перекрыть” ухудшение для minority класса
2%
Общая метрика и fairness — одно и то же
Почему избыточный pre-pruning может ухудшить способность дерева разделять данные на важных малых подгруппах?
Anonymous Quiz
2%
Дерево перестаёт быть бинарным
24%
Pre-pruning уменьшает impurity
68%
Pre-pruning отбрасывает потенциально полезные поздние разветвления
5%
Pre-pruning увеличивает количество листьев
❤1