Инструмент позволяет преобразовывать видео в тензоры с помощью интуитивно понятных API, высокой производительности процессора / CUDA и богатого встроенного инструментария ML.
Torchcodec является самой производительной библиотекой одновременного декодирования большого количества видео в рамках конвейера загрузки обучающих данных.
from torchcodec.decoders import VideoDecoder
from torch import Tensor
decoder = VideoDecoder("my_video.mp4")
# Index based frame retrieval.
first_ten_frames: Tensor = decoder[10:]
last_ten_frames: Tensor = decoder[-10:]
# Multi-frame retrieval, index and time based.
frames = decoder.get_frames_at(indices=[10, 0, 15])
#PyTorch #opensource
▪ Gtihub
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥16❤7👍6
This media is not supported in your browser
VIEW IN TELEGRAM
🗣 Kokoro-TTS
Мощнейшая TTS-модель всего лишь на 82M параметров.
Она превосходит более крупные модели и генерирует минуты речи за секунды.
Самое главное - это открытый исходный код!
Попробуйте и убедитесь сами: 👇
🤗 Hf: https://huggingface.co/spaces/hexgrad/Kokoro-TTS
#tts #ml #opensource
Мощнейшая TTS-модель всего лишь на 82M параметров.
Она превосходит более крупные модели и генерирует минуты речи за секунды.
Самое главное - это открытый исходный код!
Попробуйте и убедитесь сами: 👇
🤗 Hf: https://huggingface.co/spaces/hexgrad/Kokoro-TTS
#tts #ml #opensource
👍13🔥7❤5