Анализ данных (Data analysis)
46.9K subscribers
2.53K photos
292 videos
1 file
2.21K links
Data science, наука о данных.

@haarrp - админ

@itchannels_telegram - 🔥 главное в ит

@ai_machinelearning_big_data - ML

@machinelearning_interview - вопросы с собесдований по Ml

РКН: clck.ru/3FmyAp
Download Telegram
Функция zip() в Python создает итератор, который объединяет элементы из нескольких источников данных. Эта функция работает со списками, кортежами, множествами и словарями для создания списков или кортежей, включающих все эти данные.

Если источники данных разной длины, то объединение может привести к ошибкам ошибкам.

Начиная с #Python 3.10, использование ключевого слова strict в функции zip выховет ошибку ValueError, если длина итераций неравна.

@data_analysis_ml
19👍9🔥6🤯3
🔥 Дайджест полезных материалов из мира Машинного обучения за неделю

Почитать:
Направо пойдёшь — тестировщиком станешь, налево пойдёшь — ˂...˃: куда податься питонисту?
5 готовых скриптов Python, которые упростят вашу жизнь 2024
Список актуальных курсов на 2024 год
Семантический поиск и генерация текста на R. Часть 1
— Где бесплатно изучать Rust в 2024
Использование машинного обучения для борьбы с DDoS атаками
Маленькая история импортозамещения о разработке системы автоматического мониторинга моделей Alfa-MRM
Как мы победили в двух хакатонах Цифрового Прорыва. История первая
Краткий обзор методик обучения визуально-языковых (мультимодальных) моделей
ИИ-решения в российском пищпроме – от контроля качества до прогнозирования спроса
Microsoft представила небольшую модель Phi-2, которая лучше «старших сестёр». Что это за проект?
SALMONN — универсальная модель для всех типов аудиоданных
Нужен ли вам fine-tuning моделей и что это такое
Авторские права на производные от ИИ
Neural Style Transfer
How should AI answer more humanly ?
Dear MLE's..
Balancing Innovation and Privacy: Navigating LLM Augmentation with RAG and RA-DIT
Leaking sensitive data via membership inference attacks on machine learning models
Machine Learning
MLOps in practice: building and deploying a machine learning app
CoinSavvy: Revolutionizing Crypto Price Predictions
Training a neural network for fun and profit
New blog journey

Посмотреть:
🌐 Топ трюк оптимизации кода #Python !!! #код #программирование #yotubeshorts #питон #youtube ( 00:54)
🌐 Building Robust and Scalable Recommendation Engines for Online Food Delivery ( 25:25)
🌐 Lightning Interview "How to Ace the Data Science Job Interview in 2024" ( 46:23)

Хорошего дня!

@data_analysis_ml
👍13🔥42
🔥 Дайджест полезных материалов из мира Data Science за неделю

Почитать:
Machine Learning инженер: что/где/как изучать, чтобы въехать
Направо пойдёшь — тестировщиком станешь, налево пойдёшь — ˂...˃: куда податься питонисту?
Инженерные данные в 21 веке
10 лучших скриптов Python для автоматизации и повышения производительности 2024 года.
Spark не для чайников: где?
OpenRefine и другие альтернативные MS Excel инструменты нормализации справочников для Экспертов НСИ
Go — 100 вопросов/заданий с собеседований
Уродливая математика в машинном обучении или чему нам стоит поучиться у деривативов?
Best Web Scraping Libraries for Spring Boot
Best Web Scraping Libraries for R
How To Parse HTML With Regex
Automatically Generating Data Exploration Code in Python With Mito
Streamlit Authentication
CanvasXpress vs. Plotly: Which Data Visualization Library Is Better?
Working for a Data-Driven Startup Whose Value Surged 700% In Less Than One Year
Check Out GomorraSQL — A Library To Write Queries in Neapolitan
Achieving Loosely Coupling with a Math Expression Parser
Returning CSV Content From an API in Spring Boot

Посмотреть:
🌐 #Python трюк сопоставления #программирование #код #питон #yotube #собеседование #алгоритмы ( 00:59)
🌐 C# полный курс 2024. Урок 1: Загрузка VStudio ( 03:05)
🌐 Lightning Interview "How to Ace the Data Science Job Interview in 2024" ( 46:27)
🌐 Lightning Interview "Troubleshooting Large Language Models" ( 01:00:05)
🌐 ChatGPT: 4 Game-Changing Applications! ( 07:44)
🌐 NVIDIA Is Supercharging AI Research! ( 07:39)

Хорошего дня!

@data_analysis_ml
👍156🔥3
🖥 SQL-metadata

Если вы хотите извлечь определенные компоненты #SQL-запроса для последующей работы с нмим на #Python, используйте sql_metdata.

Извлекает имена столбцов и таблиц, используемых в запросе. Автоматически выполняет разрешение псевдонимов столбцов, разрешение псевдонимов подзапросов, а также разрешение псевдонимов таблиц.

Также предоставляет полезные функции для нормализации SQL-запросов.

pip install sql-metadata

Github
Docs

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍135🔥3