Анализ данных (Data analysis)
46.9K subscribers
2.58K photos
299 videos
1 file
2.25K links
Data science, наука о данных.

@haarrp - админ

@itchannels_telegram - 🔥 главное в ит

@ai_machinelearning_big_data - ML

@machinelearning_interview - вопросы с собесдований по Ml

РКН: clck.ru/3FmyAp
Download Telegram
📘 На Stepik вышел курс — «LangChain: с нуля до продакшн LLM-приложений»

Нужен не игрушечный бот, а воспроизводимый RAG-пайплайн с метриками и сервисом? Этот курс — про путь «ноутбук → FastAPI → прод».

🔍 Что вы получите
• RAG по PDF с цитированием источников и гибридным поиском (BM25 + вектор + rerank); контроль галлюцинаций через метрики (precision/recall@K, citation-rate)
• Инструменты и агенты для анализа данных: Pandas-задачи, структурированный JSON-вывод под отчёты/дашборды
• Продакшн-контур: FastAPI-сервис, логирование латентности/токенов, PromptOps (версии/A/B), базовый SLA-мониторинг

🎓 Сертификат по завершении — можно добавить в резюме или LinkedIn

🚀 Начните сегодня и получите скидку 25% в течение 72 часов

👉 Пройти курс на Stepik
🤣73👍3
⚡️ Train an LLM on NVIDIA Blackwell with Unsloth—and Scale It

NVIDIA представила статью «Train an LLM on NVIDIA Blackwell with Unsloth—and Scale It», в которой рассказывает о том, как разработчики благодаря открытому проекту Unsloth и новым GPU семейства NVIDIA Blackwell Series могут обучать и до-настраивать большие языковые модели (LLM) прямо на настольных или офисных системах, а затем без изменений масштабировать ту же инфраструктуру на промышленный уровень.

Unsloth - это фреймворк с открытым исходным кодом, упрощающий до-настройку и reinforcement learning (RL) для LLM. Он оптимизирован под Blackwell-GPU с следующими преимуществами: обучение в 2 раза быстрее, использование видеопамяти (VRAM) сокращено на ~70%, и поддержка крайне длинных контекстов (до 12× по сравнению с предыдущими методами). Статья показывает, что на одной Blackwell-видеокарте можно до-настроить модели с параметрами порядка 40 миллиардов и даже больше.

Кроме того, процесс установки и запуска описан подробно: от команды pip install unsloth до примеров запуска моделей типа “gpt-oss-20b” с квантованием 4-bit. После начальной до-настройки на локальной машине тот же код можно без переделок перенести на облачные решения, такие как DGX Cloud или серверсистемы NVIDIA.

Главный вывод: барьеры входа в обучение крупных языковых моделей резко снижаются — теперь индивидуальные разработчики и небольшие команды получают доступ к инструментам, которые раньше были доступны только крупным дата-центрам.

developer.nvidia.com/blog/train-an-llm-on-an-nvidia-blackwell-desktop-with-unsloth-and-scale-it/
10🔥4👍3
🦾 Потрясающе: производитель домашнего робота Neo признался, что в сложных ситуациях устройством будет управлять живой оператор.

Покупателям придётся согласиться на удалённый доступ и сбор данных — компания утверждает, что это нужно для обучения системы. Лица пользователей, обещают, будут размываться.

«Если у нас нет ваших данных, мы не сможем улучшать продукт», - заявил CEO.

Цена вопроса - 20 000 $ за робота, которого в трудный момент может подменить человек. ☕️

https://www.1x.tech/order
🤣9🔥5🤨32👍2