Анализ данных (Data analysis)
46.9K subscribers
2.53K photos
292 videos
1 file
2.21K links
Data science, наука о данных.

@haarrp - админ

@itchannels_telegram - 🔥 главное в ит

@ai_machinelearning_big_data - ML

@machinelearning_interview - вопросы с собесдований по Ml

РКН: clck.ru/3FmyAp
Download Telegram
🧠 Интеллектуальный исследовательский агент для глубоких исследований

SGR Research Agent использует Schema-Guided Reasoning для автоматического планирования и цитирования. Он поддерживает многоязычность и адаптируется к изменениям в данных, обеспечивая структурированные отчеты с источниками.

🚀 Основные моменты:
- 🤔 Приоритет уточнений при неопределенности
- 🔄 Автоматическая адаптация плана
- 📎 Управление источниками и цитированием
- 🌍 Поддержка русского и английского языков
- 📊 Генерация детализированных отчетов в Markdown

📌 GitHub: https://github.com/vakovalskii/sgr-deep-research

#python
11🔥5👍3😁2
🧠 RamTorch: Эффективное использование памяти для глубокого обучения

RamTorch — это библиотека для PyTorch, оптимизирующая использование памяти при обучении и выводе больших моделей, которые не помещаются в память GPU. Она использует гибридные реализации компонентов нейронных сетей, храня параметры в памяти CPU и передавая их на GPU по мере необходимости.

🚀 Основные моменты:
- Эффективные линейные слои с хранением параметров на CPU
- Асинхронные CUDA потоки для минимизации задержек
- Поддержка оптимизатора ZeRO-1 для распределенного обучения
- Совместимость с существующим кодом PyTorch

📌 GitHub: https://github.com/lodestone-rock/RamTorch

#python
7🔥7👍1
🚀 Примеры и руководства по моделям DeepMind Gemini

Репозиторий содержит небольшие примеры, фрагменты кода и руководства, демонстрирующие эксперименты с моделями Gemini от Google DeepMind. Здесь вы найдете полезные образцы для интеграции и использования различных функций Gemini, включая работу с OpenAI SDK и Google Search.

🚀 Основные моменты:
- Примеры использования Gemini с OpenAI и Google Search
- Руководства по функциям и агентам
- Скрипты для работы с браузером и генерации контента
- Интеграция с LangChain и PydanticAI

📌 GitHub: https://github.com/philschmid/gemini-samples

#python
5👍5🔥3
🧠 ProofOfThought: LLM Reasoning with Z3 Theorem Prover

ProofOfThought leverages large language models (LLMs) for reasoning tasks using the Z3 theorem prover. It provides a high-level API for easy integration and batch evaluation of reasoning queries, making it suitable for various applications in AI and logic.

🚀Основные моменты:
- Использует LLM для логического вывода.
- Высокоуровневый API для упрощения взаимодействия.
- Поддержка пакетной оценки с метриками точности.
- Примеры использования с Azure OpenAI.

📌 GitHub: https://github.com/DebarghaG/proofofthought

#python
👍3🤔3
🚀 Улучшение промптов для генерации изображений

PromptEnhancer — это утилита для переписывания подсказок, которая сохраняет исходный замысел и делает его более ясным и логичным. Подходит для задач генерации изображений и других приложений, требующих структурированных запросов.

🚀 Основные моменты:
- Сохраняет ключевые элементы запроса (субъект, действие, стиль и т.д.)
- Создает последовательные и логически структурированные подсказки
- Поддерживает настраиваемые параметры вывода для разнообразия и детерминизма
- Обеспечивает надежный парсинг выходных данных с возможностью резервного копирования

📌 GitHub: https://github.com/Hunyuan-PromptEnhancer/PromptEnhancer

#python
6👍3🔥2
🎥 Lynx: Высококачественная генерация персонализированного видео

Lynx — это модель генерации видео, которая создает персонализированные ролики на основе одного изображения. Использует Diffusion Transformer с адаптерами для сохранения идентичности и улучшения деталей.

🚀 Основные моменты:
- Генерация видео с высоким качеством из одного изображения.
- Легковесные модели для эффективного создания видео.
- Поддержка различных адаптеров для улучшения качества.

📌 GitHub: https://github.com/bytedance/lynx

#python
4🔥3👍2