📢 ML-трек и аналитика на восьмом международном чемпионате по программированию Yandex Cup
Яндекс открыл регистрацию на международный чемпионат по программированию Yandex Cup с призовым фондом 12 млн рублей и финалом в Стамбуле. Участники смогут соревноваться за призы и выход в финал, а ещё — пройти собеседование в Яндекс по упрощённой схеме.
Главное для участников ML-трека и трека «Аналитика»:
— Квалификация в ML-треке: с 15 октября по 5 ноября
— Трек «Аналитика» начнется с пробного тура 20-29 октября, за которым последует квалификация 2 ноября
— Финал пройдет 5-7 декабря и соберет 180 лучших разработчиков со всех направлений
Регистрация на Аналитику и другие направления открыта до 29 октября, а на ML-трек будет доступна с 15 октября по 5 ноября.
Яндекс открыл регистрацию на международный чемпионат по программированию Yandex Cup с призовым фондом 12 млн рублей и финалом в Стамбуле. Участники смогут соревноваться за призы и выход в финал, а ещё — пройти собеседование в Яндекс по упрощённой схеме.
Главное для участников ML-трека и трека «Аналитика»:
— Квалификация в ML-треке: с 15 октября по 5 ноября
— Трек «Аналитика» начнется с пробного тура 20-29 октября, за которым последует квалификация 2 ноября
— Финал пройдет 5-7 декабря и соберет 180 лучших разработчиков со всех направлений
Регистрация на Аналитику и другие направления открыта до 29 октября, а на ML-трек будет доступна с 15 октября по 5 ноября.
❤5
🧠 Интеллектуальный исследовательский агент для глубоких исследований
SGR Research Agent использует Schema-Guided Reasoning для автоматического планирования и цитирования. Он поддерживает многоязычность и адаптируется к изменениям в данных, обеспечивая структурированные отчеты с источниками.
🚀 Основные моменты:
- 🤔 Приоритет уточнений при неопределенности
- 🔄 Автоматическая адаптация плана
- 📎 Управление источниками и цитированием
- 🌍 Поддержка русского и английского языков
- 📊 Генерация детализированных отчетов в Markdown
📌 GitHub: https://github.com/vakovalskii/sgr-deep-research
#python
SGR Research Agent использует Schema-Guided Reasoning для автоматического планирования и цитирования. Он поддерживает многоязычность и адаптируется к изменениям в данных, обеспечивая структурированные отчеты с источниками.
🚀 Основные моменты:
- 🤔 Приоритет уточнений при неопределенности
- 🔄 Автоматическая адаптация плана
- 📎 Управление источниками и цитированием
- 🌍 Поддержка русского и английского языков
- 📊 Генерация детализированных отчетов в Markdown
📌 GitHub: https://github.com/vakovalskii/sgr-deep-research
#python
❤11🔥5👍3😁2
🔥 Новая SOTA среди моделей на 1.5B параметров
QuestA 🤖 показывает двузначный прирост Pass@1 и даже обгоняет ранние 32B-модели:
- AIME24: 72.50% (+10.73%)
- AIME25: 62.29% (+12.79%)
- HMMT25: 41.67% (+10.11%)
🚀 Секрет в обучении: QuestA использует RL с scaffolded-problems — это снимает конфликт между лёгкими и сложными задачами и даёт более масштабируемое рассуждение.
🔓 Всё в открытом доступе:
- Модель: https://huggingface.co/foreverlasting1202/QuestA-Nemotron-1.5B
- Тренировочный пайплайн: https://github.com/foreverlasting1202/QuestA
- Статья: https://arxiv.org/abs/2507.13266
- Блог: https://mercurial-kidney-02d.notion.site/QuestA-Expanding-Reasoning-Capacity-in-LLMs-via-Question-Augmentation-216b21d08abb81a1bcecfe79e7d1e88a?pvs=73
#LLM #Reasoning #AI #SOTA
@data_analysis_ml
QuestA 🤖 показывает двузначный прирост Pass@1 и даже обгоняет ранние 32B-модели:
- AIME24: 72.50% (+10.73%)
- AIME25: 62.29% (+12.79%)
- HMMT25: 41.67% (+10.11%)
🚀 Секрет в обучении: QuestA использует RL с scaffolded-problems — это снимает конфликт между лёгкими и сложными задачами и даёт более масштабируемое рассуждение.
🔓 Всё в открытом доступе:
- Модель: https://huggingface.co/foreverlasting1202/QuestA-Nemotron-1.5B
- Тренировочный пайплайн: https://github.com/foreverlasting1202/QuestA
- Статья: https://arxiv.org/abs/2507.13266
- Блог: https://mercurial-kidney-02d.notion.site/QuestA-Expanding-Reasoning-Capacity-in-LLMs-via-Question-Augmentation-216b21d08abb81a1bcecfe79e7d1e88a?pvs=73
#LLM #Reasoning #AI #SOTA
@data_analysis_ml
❤6👍3🔥2
💰 The Information пишет: Мира Мурати привлекла рекордные $2 млрд для своего нового ИИ-стартапа при оценке $10–12 млрд. Это крупнейший посевной раунд в истории США.
Мурати сохранила полный контроль над компанией: её голос в совете директоров весит больше всех остальных вместе взятых, а у основателей акции с 100-кратным правом голоса.
Инвесторы: Andreessen Horowitz, Accel, Nvidia, AMD и Cisco.
Ставка делается на доступ к вычислительным мощностям, выход в корпорации и масштабирование.
В команду стартапа вошёл Джон Шульман (сооснователь OpenAI) и группа экс-исследователей. Фокус команды будет направлен на обучение моделей и совершенствование их архитектуры.
Компания зарегистрирована как public benefit corporation, обещает открытые публикации и первый продукт уже в ближайшие месяцы (дропнутчто-то в open-source).
🎯 Главная идея стартапа: сделать ИИ предсказуемым и детерминированным.
Команда Мурати уверена, что это решаемая проблема. Если убрать случайность, ИИ станет безопасным для медицины, финансов и других критичных областей.
Источник: theinformation.com/articles/10-billion-enigma-mira-murati
Мурати сохранила полный контроль над компанией: её голос в совете директоров весит больше всех остальных вместе взятых, а у основателей акции с 100-кратным правом голоса.
Инвесторы: Andreessen Horowitz, Accel, Nvidia, AMD и Cisco.
Ставка делается на доступ к вычислительным мощностям, выход в корпорации и масштабирование.
В команду стартапа вошёл Джон Шульман (сооснователь OpenAI) и группа экс-исследователей. Фокус команды будет направлен на обучение моделей и совершенствование их архитектуры.
Компания зарегистрирована как public benefit corporation, обещает открытые публикации и первый продукт уже в ближайшие месяцы (дропнутчто-то в open-source).
🎯 Главная идея стартапа: сделать ИИ предсказуемым и детерминированным.
Команда Мурати уверена, что это решаемая проблема. Если убрать случайность, ИИ станет безопасным для медицины, финансов и других критичных областей.
Источник: theinformation.com/articles/10-billion-enigma-mira-murati
❤12👍4🤣4🔥3🤯1
Бизнесу данные нужны как воздух📊
На их основе компании принимают важные стратегические решения. Поэтому спрос на аналитиков растёт в самых разных сферах: от банковской до медицинской.
На курсе «Аналитика данных с МФТИ» готовят специалистов универсальной квалификации. За 10 месяцев вы научитесь использовать Python для анализа данных, применять методы ИИ в своих задачах и работать с базами данных.
С универсальными знаниями вы сможете строить карьеру в одном из трёх направлений аналитики:
➡️ Аналитика данных.
➡️ Data Science.
➡️ Инженерия данных.
🎓 После обучения получите дипломы о профессиональной переподготовке от МФТИ и Нетологии. Центр развития карьеры поможет с трудоустройством, резюме и портфолио.
Записывайтесь на курс и становитесь универсальным специалистом в аналитике → https://netolo.gy/eovL
Реклама. ООО "Нетология". ИНН 7726464125 Erid: 2VSb5wPuu7P
На их основе компании принимают важные стратегические решения. Поэтому спрос на аналитиков растёт в самых разных сферах: от банковской до медицинской.
На курсе «Аналитика данных с МФТИ» готовят специалистов универсальной квалификации. За 10 месяцев вы научитесь использовать Python для анализа данных, применять методы ИИ в своих задачах и работать с базами данных.
С универсальными знаниями вы сможете строить карьеру в одном из трёх направлений аналитики:
Записывайтесь на курс и становитесь универсальным специалистом в аналитике → https://netolo.gy/eovL
Реклама. ООО "Нетология". ИНН 7726464125 Erid: 2VSb5wPuu7P
Please open Telegram to view this post
VIEW IN TELEGRAM
❤5👍3🔥2🥱1
🧠 RamTorch: Эффективное использование памяти для глубокого обучения
RamTorch — это библиотека для PyTorch, оптимизирующая использование памяти при обучении и выводе больших моделей, которые не помещаются в память GPU. Она использует гибридные реализации компонентов нейронных сетей, храня параметры в памяти CPU и передавая их на GPU по мере необходимости.
🚀 Основные моменты:
- Эффективные линейные слои с хранением параметров на CPU
- Асинхронные CUDA потоки для минимизации задержек
- Поддержка оптимизатора ZeRO-1 для распределенного обучения
- Совместимость с существующим кодом PyTorch
📌 GitHub: https://github.com/lodestone-rock/RamTorch
#python
RamTorch — это библиотека для PyTorch, оптимизирующая использование памяти при обучении и выводе больших моделей, которые не помещаются в память GPU. Она использует гибридные реализации компонентов нейронных сетей, храня параметры в памяти CPU и передавая их на GPU по мере необходимости.
🚀 Основные моменты:
- Эффективные линейные слои с хранением параметров на CPU
- Асинхронные CUDA потоки для минимизации задержек
- Поддержка оптимизатора ZeRO-1 для распределенного обучения
- Совместимость с существующим кодом PyTorch
📌 GitHub: https://github.com/lodestone-rock/RamTorch
#python
GitHub
GitHub - lodestone-rock/RamTorch: RAM is all you need
RAM is all you need. Contribute to lodestone-rock/RamTorch development by creating an account on GitHub.
❤7🔥7👍1
⚡ Это прорыв!
Команда UCLA создала оптическую генеративную модель, которая работает на свете, а не на GPU.
В демонстрации шум сначала кодируется в фазовые паттерны с помощью лёгкого энкодера, а затем свободное распространение света (оптический декодер) превращает их в изображения, цифры, одежду, бабочек, лица и даже картины в стиле Ван Гога.
🔥 Главное - во время генерации нет никакой вычислительной нагрузки.
Результаты сопоставимы с цифровыми диффузионными моделями и открывают путь к сверхбыстрому и энергоэффективному ИИ на фотонике.
📄 Paper (Nature): https://nature.com/articles/s41586-025-09446-5#MOESM1
Команда UCLA создала оптическую генеративную модель, которая работает на свете, а не на GPU.
В демонстрации шум сначала кодируется в фазовые паттерны с помощью лёгкого энкодера, а затем свободное распространение света (оптический декодер) превращает их в изображения, цифры, одежду, бабочек, лица и даже картины в стиле Ван Гога.
🔥 Главное - во время генерации нет никакой вычислительной нагрузки.
Результаты сопоставимы с цифровыми диффузионными моделями и открывают путь к сверхбыстрому и энергоэффективному ИИ на фотонике.
📄 Paper (Nature): https://nature.com/articles/s41586-025-09446-5#MOESM1
❤29🔥13👍3👏1
Forwarded from Machinelearning
Физики Гарварда создали первый в мире квантовый компьютер, который работает непрерывно без перезапуска.
Ранее квантовые машины держались миллисекунды, максимум - около 13 секунд.
Новая установка работает более 2 часов и может функционировать бесконечно.
Ключевое новшество - решение проблемы потери атомов: система в реальном времени пополняет кубиты, впрыскивая 300 000 атомов в секунду с помощью оптических инструментов.
Учёные считают, что практические, постоянно работающие квантовые компьютеры могут появиться уже в течение 2 лет - с огромным влиянием на медицину, финансы и научные исследования.
thecrimson
По данным The Information, Anthropic продвигает свою модель Claude как основу для создания enterprise-замен привычных приложений вроде Slack. Компания делает ставку на обучение с подкреплением, чтобы улучшить способности модели к программированию.
Похожую стратегию развивает и xAI Илона Маска, но эксперты сомневаются, что крупные корпорации откажутся от укоренившихся систем вроде SAP или ServiceNow. Более вероятно, что первыми такие AI-first инструменты начнут использовать небольшие стартапы.
Тем временем JPMorgan и другие банки активно заявляют об интеграции решений OpenAI, Anthropic и Google, хотя реальные масштабы затрат пока не соответствуют публичному энтузиазму.
theinformation
Comet, запущенный в июле 2025 года, работает как встроенный ассистент: он умеет анализировать страницы, вытаскивать ключевые детали и сердить по ссылкам, проводя многошаговые исследования.
Perplexity также представила Comet Plus за $5 — партнёрскую подписку, которая открывает доступ к контенту от CNN, The Washington Post, Fortune, Los Angeles Times и Condé Nast (The New Yorker, Wired и др.).
Однако запуск совпал с продолжающимися исками от крупных издателей, включая Dow Jones (The Wall Street Journal) и New York Post, обвиняющих стартап в использовании их материалов для обучения ИИ.
Скачать Comet
TechCrunch пишет, что запуск нового соцприложения Sora 2 вызвал тревогу внутри самой OpenAI. Это TikTok-подобная лента, наполненная видео, созданными ИИ, включая дипфейки самого Сэма Альтмана.
Часть исследователей OpenAI считает, что компания уходит от своей миссии ради хайпового контента. Один из сотрудников прямо заявил: «AI-ленты - пугающие. Я был шокирован, узнав, что мы выпускаем Sora 2…»
Сторонники проекта объясняют, что такие продукты нужны, чтобы финансировать фундаментальные исследования и дать пользователям почувствовать силу технологий. В OpenAI утверждают, что хотят «показать людям что-то классное, чтобы они улыбнулись».
Но вместе с ростом Sora OpenAI рискует повторить судьбу классических соцсетей: зависимость, манипуляции c информацией, проблемы с дипфейками и давлением на метрики вовлечённости.
techcrunch
Китай в 2025 году вложит до 98 млрд долларов, но экспортные ограничения на топовые чипы Nvidia и AMD тормозят прогресс.
Huawei продвигает Ascend 910C, однако по памяти, пропускной способности и софту он уступает решениям Nvidia. США разрешили ограниченные продажи H20 и MI308 в Китай с 15% налогом, но топовые GPU недоступны китацы, и разрыв в производительности всё ещё в пользу американцев.
X
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
❤4👍3🔥2🥰2🤣1
Ищете мощный сервер без переплаты?
Выгодное решение для обработки и анализа больших данных — выделенный сервер конфигурации AR45-NVMe от Selectel. Он подойдет для эффективной работы с многопоточностью и Python, R, Spark в рамках одной машины, а также машинного обучения на CPU.
Преимущества сервера:
- 16 высокочастотных ядер,
- Безлимитный интернет-трафик и приватная сеть — 1 Гбит/с,
- DDoS-защита, публичный IPv4, SLA — 99,8%,
- Автоустановка ОС и загрузка своих ISO-образов,
- Техподдержка 24/7 и замена комплектующих за 3 часа.
Закажите сервер конфигурации AR45-NVMe на сайте в несколько кликов: https://slc.tl/2kf85?erid=2W5zFK8n6et
Выгодное решение для обработки и анализа больших данных — выделенный сервер конфигурации AR45-NVMe от Selectel. Он подойдет для эффективной работы с многопоточностью и Python, R, Spark в рамках одной машины, а также машинного обучения на CPU.
Преимущества сервера:
- 16 высокочастотных ядер,
- Безлимитный интернет-трафик и приватная сеть — 1 Гбит/с,
- DDoS-защита, публичный IPv4, SLA — 99,8%,
- Автоустановка ОС и загрузка своих ISO-образов,
- Техподдержка 24/7 и замена комплектующих за 3 часа.
Закажите сервер конфигурации AR45-NVMe на сайте в несколько кликов: https://slc.tl/2kf85?erid=2W5zFK8n6et
🚀 IBM Granite 4.0 теперь доступен в Unsloth
🧩 Модель в формате GGUF с гибридной архитектурой (Hybrid Mamba) — сочетание плотных слоёв и MoE для ускорения и снижения памяти.
⚡ Основные факты:
- Доступные размеры: Micro (3B), Tiny (7B/1B активный), Small (32B/9B активный).
- Контекст до 128K токенов.
- Тренировка в Unsloth до 2× быстрее и требует на 50% меньше VRAM.
- Поддержка Ollama, llama.cpp и Docker для лёгкого запуска.
🎯 Где полезно: чат-боты, edge-развёртывания, длинные документы, кастомизация через fine-tuning.
Подробнее: https://docs.unsloth.ai/new/ibm-granite-4.0
Hf: https://huggingface.co/collections/unsloth/granite-40-68ddf64b4a8717dc22a9322d
🧩 Модель в формате GGUF с гибридной архитектурой (Hybrid Mamba) — сочетание плотных слоёв и MoE для ускорения и снижения памяти.
⚡ Основные факты:
- Доступные размеры: Micro (3B), Tiny (7B/1B активный), Small (32B/9B активный).
- Контекст до 128K токенов.
- Тренировка в Unsloth до 2× быстрее и требует на 50% меньше VRAM.
- Поддержка Ollama, llama.cpp и Docker для лёгкого запуска.
🎯 Где полезно: чат-боты, edge-развёртывания, длинные документы, кастомизация через fine-tuning.
Подробнее: https://docs.unsloth.ai/new/ibm-granite-4.0
Hf: https://huggingface.co/collections/unsloth/granite-40-68ddf64b4a8717dc22a9322d
❤5👍4🔥1
This media is not supported in your browser
VIEW IN TELEGRAM
💡 Модель Ming-UniAudio — это универсальный фреймворк, сочетающий понимание речи, генерацию и редактирование.
- Модель Ming-UniAudio — это универсальный фреймворк, сочетающий *понимание речи*, *генерацию* и *редактирование*.
- В её основе лежит единый непрерывный токенизатор речи, интегрирующий семантические и акустические признаки.
- Поддерживается инструкционное редактирование: можно менять звук, содержание или тональность без указания временных фрагментов.
- В бенчмарках показывает конкурентные результаты и для распознавания, и для генерации речи.
- Лицензия: Apache-2.0.
💻 GitHub: https://github.com/inclusionAI/Ming-UniAudio
🤗 Tokenizer: https://huggingface.co/inclusionAI/MingTok-Audio
🤗 Model:
base: https://huggingface.co/inclusionAI/Ming-UniAudio-16B-A3B
edit: https://huggingface.co/inclusionAI/Ming-UniAudio-16B-A3B-Edit
🤗 Benchmark: https://huggingface.co/datasets/inclusionAI/Ming-Freeform-Audio-Edit-Benchmark
🌍 blog: https://xqacmer.github.io/Ming-Unitok-Audio.github.io/
#AI #Speech #SpeechLLM #LLM #GenerativeAI #Audio #ASR #TTS #SpeechEditing
- Модель Ming-UniAudio — это универсальный фреймворк, сочетающий *понимание речи*, *генерацию* и *редактирование*.
- В её основе лежит единый непрерывный токенизатор речи, интегрирующий семантические и акустические признаки.
- Поддерживается инструкционное редактирование: можно менять звук, содержание или тональность без указания временных фрагментов.
- В бенчмарках показывает конкурентные результаты и для распознавания, и для генерации речи.
- Лицензия: Apache-2.0.
💻 GitHub: https://github.com/inclusionAI/Ming-UniAudio
🤗 Tokenizer: https://huggingface.co/inclusionAI/MingTok-Audio
🤗 Model:
base: https://huggingface.co/inclusionAI/Ming-UniAudio-16B-A3B
edit: https://huggingface.co/inclusionAI/Ming-UniAudio-16B-A3B-Edit
🤗 Benchmark: https://huggingface.co/datasets/inclusionAI/Ming-Freeform-Audio-Edit-Benchmark
🌍 blog: https://xqacmer.github.io/Ming-Unitok-Audio.github.io/
#AI #Speech #SpeechLLM #LLM #GenerativeAI #Audio #ASR #TTS #SpeechEditing
❤8🔥3👍2
💾 Генеральный директор Western Digital заявил, что жёсткие диски остаются центральным элементом хранения данных для ИИ: примерно 80% данных гиперскейлеров хранятся на HDD, 10% — на SSD и ещё 10% — на лентах.
Такое распределение объясняется экономикой и энергопотреблением: диски примерно в 5–6 раз дешевле SSD при больших объёмах и потребляют меньше ватт на терабайт.
В дата-центрах данные распределяют по уровням: «горячие» — на флэше, «тёплые и холодные» — на HDD, архивные — на ленте. Это оптимальный баланс стоимости и производительности.
Однако спрос на хранение для ИИ настолько вырос, что производители не успевают удовлетворять рынок: время ожидания дисков сверхвысокой ёмкости (32 ТБ+) растягивается от нескольких месяцев до года.
pcguide.com/news/hard-drives-far-from-obsolete-says-western-digital-ceo-and-ai-is-one-big-reason-why/
Такое распределение объясняется экономикой и энергопотреблением: диски примерно в 5–6 раз дешевле SSD при больших объёмах и потребляют меньше ватт на терабайт.
В дата-центрах данные распределяют по уровням: «горячие» — на флэше, «тёплые и холодные» — на HDD, архивные — на ленте. Это оптимальный баланс стоимости и производительности.
Однако спрос на хранение для ИИ настолько вырос, что производители не успевают удовлетворять рынок: время ожидания дисков сверхвысокой ёмкости (32 ТБ+) растягивается от нескольких месяцев до года.
pcguide.com/news/hard-drives-far-from-obsolete-says-western-digital-ceo-and-ai-is-one-big-reason-why/
🔥10❤8👍4
Модель лидирует среди моделей до 1 млрд параметров и кодирует запросы в 7 раз быстрее на обычных CPU.
В отличие от декодеров, которые читают текст слева направо и не могут пересматривать ранние токены, ModernVBERT использует двунаправленный текстовый энкодер, обученный на маскировании слов, и небольшой визуальный модуль.
Каждое изображение страницы разбивается на патчи, которые отображаются в то же пространство, что и текст, а затем объединяются с токенами слов.
Механизм позднего взаимодействия (late interaction) сохраняет векторы всех токенов, позволяя каждому токену запроса находить наиболее точное соответствие. Эта комбинация двунаправленного внимания и позднего взаимодействия превосходит декодерные архитектуры при извлечении документов.
Более высокое разрешение страниц и короткая «high-resolution cooldown» фаза повышают точность поиска, хотя могут ухудшить работу с обычными изображениями. Добавление пар «только текст» в контрастивное обучение помогает модели эффективно объединять текстовое и визуальное пространство.
ColModernVBERT - остаётся компактной, демонстрирует высокие показатели на бенчмарках и работает эффективно даже на стандартных CPU.
Интересное чтиво: https://arxiv.org/abs/2510.01149
Please open Telegram to view this post
VIEW IN TELEGRAM
❤10🔥8👍5
🚀 Примеры и руководства по моделям DeepMind Gemini
Репозиторий содержит небольшие примеры, фрагменты кода и руководства, демонстрирующие эксперименты с моделями Gemini от Google DeepMind. Здесь вы найдете полезные образцы для интеграции и использования различных функций Gemini, включая работу с OpenAI SDK и Google Search.
🚀 Основные моменты:
- Примеры использования Gemini с OpenAI и Google Search
- Руководства по функциям и агентам
- Скрипты для работы с браузером и генерации контента
- Интеграция с LangChain и PydanticAI
📌 GitHub: https://github.com/philschmid/gemini-samples
#python
Репозиторий содержит небольшие примеры, фрагменты кода и руководства, демонстрирующие эксперименты с моделями Gemini от Google DeepMind. Здесь вы найдете полезные образцы для интеграции и использования различных функций Gemini, включая работу с OpenAI SDK и Google Search.
🚀 Основные моменты:
- Примеры использования Gemini с OpenAI и Google Search
- Руководства по функциям и агентам
- Скрипты для работы с браузером и генерации контента
- Интеграция с LangChain и PydanticAI
📌 GitHub: https://github.com/philschmid/gemini-samples
#python
❤5👍5🔥3
🚀 NeuTTS Air - on-device TTS с мгновенным клонированием голоса
Это первая реалистичная модель синтеза речи, запускаемая на устройстве, без api.
Формат - GGML, что позволяет работать на телефонах, ноутбуках и даже на Raspberry Pi.
Клонирование голоса за 3 секунды: достаточно короткого аудиофрагмента, чтобы сконструировать голос для последующих синтезов.
Базируется на лёгком языковом ядре (0,5 B) + нейрокодек NeuCodec, что обеспечивает баланс между качеством и скоростью.
Генерируемые аудио отмечаются водяным знаком с помощью Perceptual Threshold Watermarker — для борьбы с злоупотреблениями.
GitHub: https://github.com/neuphonic/neutts-air
Это первая реалистичная модель синтеза речи, запускаемая на устройстве, без api.
Формат - GGML, что позволяет работать на телефонах, ноутбуках и даже на Raspberry Pi.
Клонирование голоса за 3 секунды: достаточно короткого аудиофрагмента, чтобы сконструировать голос для последующих синтезов.
Базируется на лёгком языковом ядре (0,5 B) + нейрокодек NeuCodec, что обеспечивает баланс между качеством и скоростью.
Генерируемые аудио отмечаются водяным знаком с помощью Perceptual Threshold Watermarker — для борьбы с злоупотреблениями.
GitHub: https://github.com/neuphonic/neutts-air
❤8🔥4👍2
Исследование, в котором анализирует феномен Neuro-sama – виртуального стримера, полностью управляемого крупной языковой моделью.
Neuro-sama ведёт трансляции от лица анимированного аватара, общаясь с чатом в реальном времени без участия человека.
Исследователи использовали опросы, интервью и анализ логов чата, чтобы понять, как зрители открывают для себя ИИ-стримера, почему остаются и как формируется эмоциональная связь.
- Зрители приходят из любопытства: их привлекает новизна, скорость ответов и непредсказуемость поведения ИИ.
- Они остаются из-за эмоциональных моментов, которые создают чувство общности и групповую идентичность вокруг персонажа.
- Несмотря на осознание, что это программа, фанаты общаются с ИИ как с живым существом, формируя социальную привязанность.
- Для зрителей аутентичность = стабильность, а не человечность. Последовательное поведение и узнаваемая личность важнее реалистичных эмоций.
- В чате преобладают прямые вопросы и команды, превращая стрим в интерактивный тест ИИ.
- 85% платных сообщений используются, чтобы направлять поведение Neuro-sama, делая зрителей соавторами контента.
Основная дилемма:
Создателям нужно сохранять устойчивый характер персонажа, но при этом давать пространство для импровизации и неожиданности.
Слишком предсказуемый ИИ теряет интерес, но слишком изменчивый разрушает ощущение «личности».
В итоге такие проекты показывают, как человеческое восприятие аутентичности постепенно адаптируется: нам всё меньше нужна «реальность», и всё больше – постоянство и вовлечённость, даже если источник этой личности — алгоритм.
📌 Подробнее: https://arxiv.org/abs/2509.10427
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤11👍4🔥1
На бенчмарке Terminal-Bench Hard (кодинг и терминальные агенты) модели DeepSeek V3.2 Exp, Kimi K2 0905 и GLM-4.6 показали серьёзный рост - DeepSeek уже обогнал Gemini 2.5 Pro.
Это значит, что open-source-модели теперь становятся реальной альтернативой для агентных сценариев и разработки — выбор разработчиков шире, чем когда-либо.
Внизу - анализ цены и производительности ведущих провайдеров 👇
Please open Telegram to view this post
VIEW IN TELEGRAM
❤7🔥5👍2
За 404 секунды можно понять, почему в комьюнити обсуждают MCP как следующий шаг в развитии open source
Model Context Protocol убирает хаос интеграций: теперь AI-агент может одинаково легко работать с IDE, таск-трекерами, базами данных и другими сервисами. Открытый стандарт делает экосистему разработки более прозрачной и управляемой.
В выпуске «404 секунды» — разбор MCP и того, как его уже поддержал SourceCraft, чтобы AI-агенты могли управлять полным циклом разработки: от кода и автотестов до деплоя в облако.
Подробности — в свежем выпуске на YouTube или VK Видео
Model Context Protocol убирает хаос интеграций: теперь AI-агент может одинаково легко работать с IDE, таск-трекерами, базами данных и другими сервисами. Открытый стандарт делает экосистему разработки более прозрачной и управляемой.
В выпуске «404 секунды» — разбор MCP и того, как его уже поддержал SourceCraft, чтобы AI-агенты могли управлять полным циклом разработки: от кода и автотестов до деплоя в облако.
Подробности — в свежем выпуске на YouTube или VK Видео
❤4
🧠 ProofOfThought: LLM Reasoning with Z3 Theorem Prover
ProofOfThought leverages large language models (LLMs) for reasoning tasks using the Z3 theorem prover. It provides a high-level API for easy integration and batch evaluation of reasoning queries, making it suitable for various applications in AI and logic.
🚀Основные моменты:
- Использует LLM для логического вывода.
- Высокоуровневый API для упрощения взаимодействия.
- Поддержка пакетной оценки с метриками точности.
- Примеры использования с Azure OpenAI.
📌 GitHub: https://github.com/DebarghaG/proofofthought
#python
ProofOfThought leverages large language models (LLMs) for reasoning tasks using the Z3 theorem prover. It provides a high-level API for easy integration and batch evaluation of reasoning queries, making it suitable for various applications in AI and logic.
🚀Основные моменты:
- Использует LLM для логического вывода.
- Высокоуровневый API для упрощения взаимодействия.
- Поддержка пакетной оценки с метриками точности.
- Примеры использования с Azure OpenAI.
📌 GitHub: https://github.com/DebarghaG/proofofthought
#python
GitHub
GitHub - DebarghaG/proofofthought: "Proof of thought: Neurosymbolic program synthesis allows robust and interpretable reasoning"…
"Proof of thought: Neurosymbolic program synthesis allows robust and interpretable reasoning" published Sys2Reasoning Workshop NeurIPS 2024 - DebarghaG/proofofthought
👍3🤔3
This media is not supported in your browser
VIEW IN TELEGRAM
Твой шанс прокачаться в ИТ, получить карьерный буст и побороться за призовой фонд 10 250 000 рублей 💰 Успей зарегистрироваться до 20 октября.
МТС приглашает на True Tech Champ — всероссийский чемпионат по программированию. Соревнование будет проходить в двух треках.
Трек 1. Алгоритмический. Индивидуальный зачет [призовой фонд 2 750 000 рублей]
Реши задачи, которые помогут прокачаться в работе с алгоритмами и структурами данных. Похожие задания встречаются на собеседованиях в МТС и других крупных компаниях. До 240 лучших участников попадут в финал и сразятся в лайв-кодинге.
Трек 2. Программирование роботов. Командный формат [призовой фонд 7 500 000 рублей]
Проведи робота по виртуальному лабиринту, затем управляй им дистанционно на офлайн-полигоне, а в финале — пройди испытания на реальной площадке и выбей соперников с платформы. Организаторы отправят командам финалистов по одному роботу Waveshare Cobra Flex для кастомизации. После соревнований они останутся у участников в качестве подарка.
📍 Зрелищный шоу-финал с ИИ-технологиями, кодерскими челленджами и выступлениями международных и российских спикеров пройдет 21 ноября в МТС Live Холл.
🎁 Регистрация участников до 20 октября на сайте.
МТС приглашает на True Tech Champ — всероссийский чемпионат по программированию. Соревнование будет проходить в двух треках.
Трек 1. Алгоритмический. Индивидуальный зачет [призовой фонд 2 750 000 рублей]
Реши задачи, которые помогут прокачаться в работе с алгоритмами и структурами данных. Похожие задания встречаются на собеседованиях в МТС и других крупных компаниях. До 240 лучших участников попадут в финал и сразятся в лайв-кодинге.
Трек 2. Программирование роботов. Командный формат [призовой фонд 7 500 000 рублей]
Проведи робота по виртуальному лабиринту, затем управляй им дистанционно на офлайн-полигоне, а в финале — пройди испытания на реальной площадке и выбей соперников с платформы. Организаторы отправят командам финалистов по одному роботу Waveshare Cobra Flex для кастомизации. После соревнований они останутся у участников в качестве подарка.
📍 Зрелищный шоу-финал с ИИ-технологиями, кодерскими челленджами и выступлениями международных и российских спикеров пройдет 21 ноября в МТС Live Холл.
🎁 Регистрация участников до 20 октября на сайте.
❤2