Forwarded from Machinelearning
Группа инженеров из Google DeepMind опубликовали 12-ю главу своего он-лайн учебника "How to Scale Your Model: A Systems View of LLMs on TPUs"
How to Scale Your Model - практико-ориентированное руководство по масштабированию LLM из 12 разделов для разработчиков и исследователей. Оно объясняет, как анализировать и оптимизировать производительность модели, учитывая системные ресурсы: вычисления, память и пропускную способность.
Пособие научит выбирать оптимальные стратегии параллелизма, оценивать стоимость и время обучения и инференса, а также глубже понять взаимодействие между TPU/GPU и алгоритмами масштабирования как на одном, так и на тысячах ускорителей.
12-я глава - глубокое техническое руководство по архитектуре GPU и стратегиям масштабирования больших моделей. В ней детально разбирается устройство современных GPU NVIDIA: Streaming Multiprocessors, Tensor Cores, иерархия памяти (HBM, L2, SMEM), все это с подробными сравнительными таблицами характеристик для разных поколений чипов.
Очень подробно выполнено сравнение архитектур GPU и TPU, с объясняем ключевого различия между модульностью GPU и монолитностью TPU.
Особое внимание, что редкость для обучающих материалов, уделено сетевой организации кластеров. Авторы доступно объясняют как GPU соединяются внутри узлов через NVLink/NVSwitch и между узлами через InfiniBand в топологии "Fat tree", и как пропускная способность на каждом уровне влияет на реальную производительность коллективных операций (AllReduce, AllGather).
Описаны основные стратегии параллелизма: Data Parallelism, Tensor Parallelism, Expert Parallelism и Pipeline Parallelism, с разбором их ограничений и примеров из реальных проектов.
В конце главы есть хороший анализ новых возможностей архитектуры Blackwell.
@ai_machinelearning_big_data
#AI #ML #LLM #Scaling #GPU #TPU
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍13❤5❤🔥2🔥1
Media is too big
VIEW IN TELEGRAM
⚡️ Hunyuan 3D Engine
Новый высокоточный ИИ-движок сокращает производство коммерческих 3D-ассетов с недель до нескольких минут.
Платформа поддерживает создание объектов из текста, изображений с мультивидовой реконструкцией и даже из простых скетчей. Это делает процесс максимально гибким и доступным как художникам, так и командам в индустрии.
Качество отвечает профессиональному уровню. Новый 3D-DiT модельный стек обеспечивает трёхкратный прирост точности и выдаёт ультра-HD разрешение. Форматы OBJ и GLB легко подключаются к Unreal Engine, Unity и Blender.
Модель также доступна через Tencent Cloud International.
Платформа даёт новым авторам 20 бесплатных генераций в день. Корпоративные клиенты получают 200 бесплатных кредитов при регистрации.
Попробовать движок можно на 3d.hunyuanglobal.com
API: tencentcloud.com/products/ai3d
#AI #3D #Hunyuan3D #Tencent #AItools #3Dgeneration
Новый высокоточный ИИ-движок сокращает производство коммерческих 3D-ассетов с недель до нескольких минут.
Платформа поддерживает создание объектов из текста, изображений с мультивидовой реконструкцией и даже из простых скетчей. Это делает процесс максимально гибким и доступным как художникам, так и командам в индустрии.
Качество отвечает профессиональному уровню. Новый 3D-DiT модельный стек обеспечивает трёхкратный прирост точности и выдаёт ультра-HD разрешение. Форматы OBJ и GLB легко подключаются к Unreal Engine, Unity и Blender.
Модель также доступна через Tencent Cloud International.
Платформа даёт новым авторам 20 бесплатных генераций в день. Корпоративные клиенты получают 200 бесплатных кредитов при регистрации.
Попробовать движок можно на 3d.hunyuanglobal.com
API: tencentcloud.com/products/ai3d
#AI #3D #Hunyuan3D #Tencent #AItools #3Dgeneration
👍5🔥3❤1❤🔥1🥱1
Forwarded from Machinelearning
Исследовательская группа DeepReinforce разработала систему полностью автоматического написания GPU-кода для матричного умножения под названием CUDA-L2.
Этот код работает на 10–30% быстрее, чем cuBLAS и cuBLASLt, а это, на минуточку, уже оптимизированные библиотеки от самой NVIDIA.
Обычно такие библиотеки создаются вручную людьми, которые используют готовые шаблоны ядер. А автотюнеры лишь подкручивают параметры, например, размер тайлов.
Но DeepReinforce считают, что даже критически важные и глубоко оптимизированные задачи, как HGEMM, могут быть улучшены с помощью LLM, работающей в связке с RL.
В системе CUDA-L2 языковая модель буквально пишет исходный код CUDA с нуля для каждого размера матрицы. Она не просто меняет параметры, она может менять структуру кода, циклы, стратегию тайлинга, паддинг и даже свизл-паттерны. А еще, она сама выбирает стиль программирования - будь то сырой CUDA, CuTe, CUTLASS или inline PTX.
Процесс выглядит так: цикл RL запускает сгенерированные ядра на реальном железе, измеряет скорость и корректность, а затем обновляет LLM. Со временем модель выводит свои собственные правила производительности, вместо того чтобы полагаться на знания, заложенные людьми.
В качестве генератора использовалась модель DeepSeek 671B. Ее дополнительно доучили на смеси массива CUDA-ядер и качественном коде из библиотек PyTorch, ATen, CUTLASS и примеров от NVIDIA.
Для претрейна и файнтюна LLM большая часть времени GPU тратится именно на операции матричного умножения HGEMM. Если ускорить эти ядра на те самые 10–30%, которые обещает CUDA-L2, то весь процесс обучения становится заметно дешевле и быстрее.
Поскольку CUDA-L2 обрабатывает около 1000 реальных размеров матриц, а не пару вручную настроенных, ускорение работает для самых разных архитектур. Это значит, что в тот же бюджет на GPU можно вместить больше токенов обучения, больше прогонов SFT или RLHF и т.д.
HGEMM-ядра, созданные CUDA-L2, стабильно быстрее стандартных библиотек.
В так называемом "оффлайн-сценарии" CUDA-L2 работает примерно на 17–22% быстрее, чем
torch.matmul, cuBLAS и cuBLASLt. Она даже на 11% обгоняет cuBLASLt AutoTuning, который сам по себе уже использует поиск ядра.А в "серверном", сценарии, который имитирует реальный инференс с паузами между вызовами - разница еще больше: буст в 24–29% по сравнению с
torch.matmul и cuBLAS.Простым рисёрчем проект не ограничен, в репозитории на Github авторы выложили оптимизированные ядра HGEMM A100 для 1000 конфигураций.
В планах: расширение на архитектуры Ada Lovelace, Hopper, Blackwell, поддержка более плотных конфигураций и 32-битный HGEMM.
@ai_machinelearning_big_data
#AI #ML #CUDA #DeepReinforce
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍14🤣3🤬2