Data Analysis / Big Data
2.83K subscribers
567 photos
3 videos
2 files
2.83K links
Лучшие посты по анализу данных и работе с Big Data на русском и английском языке

Разместить рекламу: @tproger_sales_bot

Правила общения: https://tprg.ru/rules

Другие каналы: @tproger_channels
Download Telegram
Больше, чем BI: 23 фичи Luxms BI, которыми мы гордимся. Часть 2: Функционал классической BI-системы

Это вторая часть серии «23 фичи Luxms BI, которыми мы гордимся». В первой (прочитать можно здесь) мы говорили о платформенности и архитектуре — о том, на чём держится система.

А сегодня расскажем о базе, о функционале классической BI-системы, который и делает систему BI-системой.

Этот раздел про то, без чего не обходится ни одна зрелая BI-система — визуализации, переменные, геоаналитика, сводные таблицы и внутренний язык. Мы не столько гордимся самим фактом их наличия — всё это действительно есть во многих решениях, сколько тем, как именно эти возможности реализованы в Luxms BI — у нас всё заточено под скорость, гибкость и удобство.


Читать: https://habr.com/ru/companies/luxms_bi/articles/961378/

#ru

@big_data_analysis | Другие наши каналы
Выбираем open-source эмбеддинг-модель для AI-консультанта на русском (RAG-подход)

Разрабатывая AI-консультантов и ассистентов на базе RAG-архитектуры, работающих с корпоративными базами знаний на русском языке, мы столкнулись с вопросом: какие открытые эмбеддинг-модели дают лучший баланс качества семантического поиска на русском и скорости работы. Особенно это актуально, когда запросы и документы русскоязычные, но внутри часто попадаются фрагменты кода/SQL и англоязычной терминологии.

Мы прогнали 9 open-source эмбеддинг-моделей через несколько тестов, включающих проверки:


Читать: https://habr.com/ru/articles/961972/

#ru

@big_data_analysis | Другие наши каналы
Преодолевай нежно: проверенный метод обхода сопротивления при внедрении BI

По данным Gartner, до 70-80% BI-инициатив не достигают поставленных целей, доля активных пользователей не превышает 30-40% количества лицензий, а аналитики тратят половину своего времени не на инсайты, а на рутину. И главная причина этого фиаско кроется не в недостаточной производительности серверов, элегантности дашбордов и даже не в качестве данных. Проекты буксуют, а инвестиции не окупаются из-за людей: их привычек, страхов, устоявшихся ритуалов принятия решений и, как следствие, активного или пассивного сопротивления новым инструментам. В этой статье я расскажу о новом подходе, который позволяет системно подойти к вопросу работы с сопротивлением для CIO, CDO, руководители бизнес-функций, продакт-менеджеров BI и лидеров аналитики. В этой статье мы начнем знакомиться с системным, человекоцентричным подходом к преодолению сопротивления, который уже был неоднократно опробован на практике.


Читать: https://habr.com/ru/companies/visiology/articles/962024/

#ru

@big_data_analysis | Другие наши каналы
Data Quality в масштабе Big Data: как мы построили систему контроля качества данных в Hadoop

Качество данных — это не просто вопрос наличия значений в столбцах таблиц. Это вопрос доверия к данным в целом. Мы можем создавать сложные системы отчётности, но если на каком-то этапе ETL в данных возникают пропуски, дубликаты или они не соответствуют ожиданиям, вся система теряет доверие потребителей. В результате приходится тратить много времени на поиск и устранение причин таких проблем.


Читать: https://habr.com/ru/companies/ozontech/articles/962174/

#ru

@big_data_analysis | Другие наши каналы
👍1